scholarly journals Non-integrable Ising Models in Cylindrical Geometry: Grassmann Representation and Infinite Volume Limit

Author(s):  
Giovanni Antinucci ◽  
Alessandro Giuliani ◽  
Rafael L. Greenblatt

AbstractIn this paper, meant as a companion to Antinucci et al. (Energy correlations of non-integrable Ising models: the scaling limit in the cylinder, 2020. arXiv: 1701.05356), we consider a class of non-integrable 2D Ising models in cylindrical domains, and we discuss two key aspects of the multiscale construction of their scaling limit. In particular, we provide a detailed derivation of the Grassmann representation of the model, including a self-contained presentation of the exact solution of the nearest neighbor model in the cylinder. Moreover, we prove precise asymptotic estimates of the fermionic Green’s function in the cylinder, required for the multiscale analysis of the model. We also review the multiscale construction of the effective potentials in the infinite volume limit, in a form suitable for the generalization to finite cylinders. Compared to previous works, we introduce a few important simplifications in the localization procedure and in the iterative bounds on the kernels of the effective potentials, which are crucial for the adaptation of the construction to domains with boundaries.

2011 ◽  
Vol 48 (03) ◽  
pp. 885-891
Author(s):  
Torrey Johnson ◽  
Edward C. Waymire

The almost-sure existence of a polymer probability in the infinite volume limit is readily obtained under general conditions of weak disorder from standard theory on multiplicative cascades or branching random walks. However, speculations in the case of strong disorder have been mixed. In this note existence of an infinite volume probability is established at critical strong disorder for which one has convergence in probability. Some calculations in support of a specific formula for the almost-sure asymptotic variance of the polymer path under strong disorder are also provided.


2004 ◽  
Vol 18 (06) ◽  
pp. 841-858 ◽  
Author(s):  
ELIANO PESSA ◽  
GIUSEPPE VITIELLO

We discuss some features of the dissipative quantum model of brain in the frame of the formalism of quantum dissipation. Such a formalism is based on the doubling of the system degrees of freedom. We show that the doubled modes account for the quantum noise in the fluctuating random force in the system-environment coupling. Remarkably, such a noise manifests itself through the coherent structure of the system ground state. The entanglement of the system modes with the doubled modes is shown to be permanent in the infinite volume limit. In such a limit the trajectories in the memory space are classical chaotic trajectories.


Sign in / Sign up

Export Citation Format

Share Document