quantum model
Recently Published Documents


TOTAL DOCUMENTS

503
(FIVE YEARS 128)

H-INDEX

32
(FIVE YEARS 6)

Author(s):  
Elias Andre Starchl ◽  
Helmut Ritsch

Abstract Quantum annealing aims at finding optimal solutions to complex optimization problems using a suitable quantum many body Hamiltonian encoding the solution in its ground state. To find the solution one typically evolves the ground state of a soluble, simple initial Hamiltonian adiabatically to the ground state of the designated final Hamiltonian. Here we explore whether and when a full quantum representation of the dynamics leads to higher probability to end up in the desired ground when compared to a classical mean field approximation. As simple but nontrivial example we target the ground state of interacting bosons trapped in a tight binding lattice with small local defect by turning on long range interactions. Already two atoms in four sites interacting via two cavity modes prove complex enough to exhibit significant differences between the full quantum model and a mean field approximation for the cavity fields mediating the interactions. We find a large parameter region of highly successful quantum annealing, where the semi-classical approach largely fails. Here we see strong evidence for the importance of entanglement to end close to the optimal solution. The quantum model also reduces the minimal time for a high target occupation probability. Surprisingly, in contrast to naive expectations that enlarging the Hilbert space is beneficial, different numerical cut-offs of the Hilbert space reveal an improved performance for lower cut-offs, i.e. an nonphysical reduced Hilbert space, for short simulation times. Hence a less faithful representation of the full quantum dynamics sometimes creates a higher numerical success probability in even shorter time. However, a sufficiently high cut-off proves relevant to obtain near perfect fidelity for long simulations times in a single run. Overall our results exhibit a clear improvement to find the optimal solution based on a quantum model versus simulations based on a classical field approximation.


Author(s):  
Chenhua Geng ◽  
Hong-Ye Hu ◽  
Yijian Zou

Abstract Differentiable programming is a new programming paradigm which enables large scale optimization through automatic calculation of gradients also known as auto-differentiation. This concept emerges from deep learning, and has also been generalized to tensor network optimizations. Here, we extend the differentiable programming to tensor networks with isometric constraints with applications to multiscale entanglement renormalization ansatz (MERA) and tensor network renormalization (TNR). By introducing several gradient-based optimization methods for the isometric tensor network and comparing with Evenbly-Vidal method, we show that auto-differentiation has a better performance for both stability and accuracy. We numerically tested our methods on 1D critical quantum Ising spin chain and 2D classical Ising model. We calculate the ground state energy for the 1D quantum model and internal energy for the classical model, and scaling dimensions of scaling operators and find they all agree with the theory well.


2021 ◽  
Author(s):  
Gunnar Epping ◽  
Elizabeth Fisher ◽  
Ariel Zeleznikow-Johnston ◽  
Emmanuel Pothos ◽  
Naotsugu Tsuchiya

Since Tversky (1977) argued that similarity judgments violate the three metric axioms, asymmetrical similarity judgments have been offered as particularly difficult challenges for standard, geometric models of similarity, such as multidimensional scaling. According to Tversky (1977), asymmetrical similarity judgments are driven by differences in salience or extent of knowledge. However, the notion of salience has been difficult to operationalize to different kinds of stimuli, especially perceptual stimuli for which there are no apparent differences in extent of knowledge. To investigate similarity judgments between perceptual stimuli, across three experiments we collected data where individuals would rate the similarity of a pair of temporally separated color patches. We identified several violations of symmetry in the empirical results, which the conventional multidimensional scaling model cannot readily capture. Pothos et al. (2013) proposed a quantum geometric model of similarity to account for Tversky’s (1977) findings. In the present work, we developed this model to a form that can be fit to similarity judgments. We fit several variants of quantum and multidimensional scaling models to the behavioral data and concluded in favor of the quantum approach. Without further modifications of the model, the quantum model additionally predicted violations of the triangle inequality that we observed in the same data. Overall, by offering a different form of geometric representation, the quantum geometric model of similarity provides a viable alternative to multidimensional scaling for modeling similarity judgments, while still allowing a convenient, spatial illustration of similarity.


2021 ◽  
Author(s):  
JIAN ZENG ◽  
ZHI-YUAN LI

Abstract The strongly coupled system composed of atoms, molecules, molecule aggregates, and semiconductor quantum dots embedded within an optical microcavity/nanocavity with high quality factor and/or low modal volume has become an excellent platform to study cavity quantum electrodynamics (CQED), where a prominent quantum effect called Rabi splitting can occur due to strong interaction of cavity-mode single-photon with the two-level atomic states. In this paper, we build a new quantum model that can describe the optical response of the strongly-coupled system under the action of an external probing light and the spectral lineshape. We take the Hamiltonian for the strongly-coupled photon-atom system as the unperturbed Hamiltonian H 0 and the interaction Hamiltonian of the probe light upon the coupled-system quantum states as the perturbed Hamiltonian V. The theory yields a double Lorentzian lineshape for the permittivity function, which agrees well with experimental observation of Rabi splitting in terms of spectral splitting. This quantum theory will pave the way to construct a complete understanding for the microscopic strongly-coupled system that will become an important element for quantum information processing, nano-optical integrated circuits, and polariton chemistry.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2342
Author(s):  
Piero Truini ◽  
Alessio Marrani ◽  
Michael Rios ◽  
Klee Irwin

We introduce a quantum model for the universe at its early stages, formulating a mechanism for the expansion of space and matter from a quantum initial condition, with particle interactions and creation driven by algebraic extensions of the Kac–Moody Lie algebra e9. We investigate Kac–Moody and Borcherds algebras, and we propose a generalization that meets further requirements that we regard as fundamental in quantum gravity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3070
Author(s):  
Wan-Ta Fan ◽  
Po-Tsun Liu ◽  
Po-Yi Kuo ◽  
Chien-Min Chang ◽  
I-Han Liu ◽  
...  

The integration of 4 nm thick amorphous indium tungsten oxide (a-IWO) and a hafnium oxide (HfO2) high-κ gate dielectric has been demonstrated previously as one of promising amorphous oxide semiconductor (AOS) thin-film transistors (TFTs). In this study, the more positive threshold voltage shift (∆VTH) and reduced ION were observed when increasing the oxygen ratio during a-IWO deposition. Through simple material measurements and Technology Computer Aided Design (TCAD) analysis, the distinct correlation between different chemical species and the corresponding bulk and interface density of states (DOS) parameters were systematically deduced, validating the proposed physical mechanisms with a quantum model for a-IWO nanosheet TFT. The effects of oxygen flow on oxygen interstitial (Oi) defects were numerically proved for modulating bulk dopant concentration Nd and interface density of Gaussian acceptor trap NGA at the front channel, significantly dominating the transfer characteristics of a-IWO TFT. Furthermore, based on the studies of density functional theory (DFT) for the correlation between formation energy Ef of Oi defect and Fermi level (EF) position, we propose a numerical methodology for monitoring the possible concentration distribution of Oi as a function of a bias condition for AOS TFTs.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2784
Author(s):  
Oliver Waddup ◽  
Pawel Blasiak ◽  
James M. Yearsley ◽  
Bartosz W. Wojciechowski ◽  
Emmanuel M. Pothos

Considering two agents responding to two (binary) questions each, we define sensitivity to context as a state of affairs such that responses to a question depend on the other agent’s questions, with the implication that it is not possible to represent the corresponding probabilities with a four-way probability distribution. We report two experiments with a variant of a prisoner’s dilemma task (but without a Nash equilibrium), which examine the sensitivity of participants to context. The empirical results indicate sensitivity to context and add to the body of evidence that prisoner’s dilemma tasks can be constructed so that behavior appears inconsistent with baseline classical probability theory (and the assumption that decisions are described by random variables revealing pre-existing values). We fitted two closely matched models to the results, a classical one and a quantum one, and observed superior fits for the latter. Thus, in this case, sensitivity to context goes hand in hand with (epiphenomenal) entanglement, the key characteristic of the quantum model.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012171
Author(s):  
E.D. Payares ◽  
J.C. Martinez-Santos

Abstract The paradigm of Quantum computing and artificial intelligence has been growing steadily in recent years and given the potential of this technology by recognizing the computer as a physical system that can take advantage of quantum mechanics for solving problems faster, more efficiently, and accurately. We suggest experimentation of this potential through an architecture of different quantum models computed in parallel. In this work, we present encouraging results of how it is possible to use Quantum Processing Units analogically to Graphics Processing Units to accelerate algorithms and improve the performance of machine learning models through three experiments. The first experiment was a reproduction of a parity function, allowing us to see how the convergence of a given Quantum model is influenced significantly by computing it in parallel. For the second and third experiments, we implemented an image classification problem by training quantum neural networks and using pre-trained models to compare their performances with the same experiments carried out with parallel quantum computations. We obtained very similar results in the accuracies, which were close to 100% and significantly improved the execution time, approximately 15 times faster in the best-case scenario. We also propose an alternative as a proof of concept to address emotion recognition problems using optimization algorithms and how execution times can be positively affected by parallel quantum computation. To do this, we use tools such as the cross-platform software library PennyLane and Amazon Web Services to access high-end simulators with Amazon Braket and IBM quantum experience.


Sign in / Sign up

Export Citation Format

Share Document