vacuum energy density
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 43)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 2022 (01) ◽  
pp. 010
Author(s):  
S. Bellucci ◽  
W. Oliveira dos Santos ◽  
E.R. Bezerra de Mello ◽  
A.A. Saharian

Abstract We investigate topological effects of a cosmic string and compactification of a spatial dimension on the vacuum expectation value (VEV) of the energy-momentum tensor for a fermionic field in (4+1)-dimensional locally AdS spacetime. The contribution induced by the compactification is explicitly extracted by using the Abel-Plana summation formula. The mean energy-momentum tensor is diagonal and the vacuum stresses along the direction perpendicular to the AdS boundary and along the cosmic string are equal to the energy density. All the components are even periodic functions of the magnetic fluxes inside the string core and enclosed by compact dimension, with the period equal to the flux quantum. The vacuum energy density can be either positive or negative, depending on the values of the parameters and the distance from the string. The topological contributions in the VEV of the energy-momentum tensor vanish on the AdS boundary. Near the string the effects of compactification and gravitational field are weak and the leading term in the asymptotic expansion coincides with the corresponding VEV in (4+1)-dimensional Minkowski spacetime. At large distances, the decay of the cosmic string induced contribution in the vacuum energy-momentum tensor, as a function of the proper distance from the string, follows a power law. For a cosmic string in the Minkowski bulk and for massive fields the corresponding fall off is exponential. Within the framework of the AdS/CFT correspondence, the geometry for conformal field theory on the AdS boundary corresponds to the standard cosmic string in (3+1)-dimensional Minkowski spacetime compactified along its axis.


Author(s):  
Ezequiel Lozano ◽  
Francisco Diego Mazzitelli

In this paper, we consider a quantum mechanical system to model the effect of quantum fields on the evolution of the early universe. The system consists of an inverted oscillator bilinearly coupled to a set of harmonic oscillators. We point out that the role of noise may be crucial in the dynamics of the oscillator, which is analyzed using the theory of harmonic oscillators with random frequency. Using this analogy, we argue that due to the fluctuations around its mean value, a positive vacuum energy density would not produce an exponentially expanding but an oscillating universe, in the same fashion that an inverted pendulum is stabilized by random oscillations of the suspension point (stochastic Kapitza pendulum). The results emphasize the relevance of noise in the evolution of the scale factor.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
C. P. Singh ◽  
Joan Solà Peracaula

AbstractIn this paper, we study Friedmann cosmology with time-varying vacuum energy density in the context of Brans–Dicke theory. We consider an isotropic and homogeneous flat space, filled with a matter-dominated perfect fluid and a dynamical cosmological term $$\varLambda (t) $$ Λ ( t ) , obeying the equation of state of the vacuum. As the exact nature of a possible time-varying vacuum is yet to be found, we explore $$\varLambda (t)$$ Λ ( t ) given by the phenomenological law $$\varLambda (t)=\lambda +\sigma H$$ Λ ( t ) = λ + σ H , where $$\lambda $$ λ and $$\sigma $$ σ are positive constants. We solve the model and then focus on two different cases $$\varLambda _{H1}$$ Λ H 1 and $$\varLambda _{H2}$$ Λ H 2 by assuming $$\varLambda =\lambda $$ Λ = λ and $$\varLambda =\sigma H$$ Λ = σ H , respectively. Notice that $$\varLambda _{H1}$$ Λ H 1 is the analog of the standard $$\varLambda $$ Λ CDM, but within the Brans–Dicke cosmology. We find the analytical solution of the main cosmological functions such as the Hubble parameter, the scale factor, deceleration and equation of state parameters for these models. In order to test the viability of the cosmological scenarios, we perform two sets of joint observational analyses of the recent Type Ia supernova data (Pantheon), observational measurements of Hubble parameter data, Baryon acoustic oscillation/Cosmic microwave background data and Local Hubble constant for each model. For the sake of comparison, the same data analysis is performed for the $$\varLambda $$ Λ CDM model. Each model shows a transition from decelerated phase to accelerated phase and can be viewed as an effective quintessence behavior. Using the model selection criteria AIC and BIC to distinguish from existing dark energy models, we find that the Brans–Dicke analog of the $$\varLambda $$ Λ -cosmology (i.e. our model $$\varLambda _{H1}$$ Λ H 1 ) performs at a level comparable to the standard $$\varLambda $$ Λ CDM, whereas $$\varLambda _{H2}$$ Λ H 2 is less favoured.


Author(s):  
Biswaranjan Dikshit

Cosmic inflation has presented solutions for a number of important cosmological problems, yet left some unanswered. In this paper, we present a cosmological model based on the quantization of the zero-point field which is consistent with empirical data, requires fewer assumptions, and presents answers to some of those unanswered questions. A comparison between standard cosmology and the theory presented in this paper is given below. Vacuum energy density: Standard inflationary model needs both Hubble’s constant and Matter density to estimate it. But, new cosmological model needs only Hubble’s constant. Non-vacuum energy density: Standard model can’t predict it. But, the new model can predict using only Hubble’s constant. Ratio of vacuum energy to total energy: Standard model can’t predict it. But, new model can predict it, that too without using Hubble’s constant. Energy conservation: In standard model, total energy is not conserved before inflation. But, in the new model, energy is conserved right from beginning of the universe whose net energy (including gravitational potential energy) is always zero. Flatness and homogeneity: Standard model needs Inflaton field with a specific potential energy distribution to explain it. But, new model doesn’t need any such hypothetical field, just the zero-point field is sufficient. Based on the new cosmological model, in the conclusion, realistic possibility for existence of multiverse and a mechanism for end of universe are discussed.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Alex May ◽  
Petar Simidzija ◽  
Mark Van Raamsdonk

Abstract Using a holographic model, we study quantum field theories with a layer of one CFT surrounded by another CFT, on either a periodic or an infinite direction. We study the vacuum energy density in each CFT as a function of the central charges, the thickness of the layer(s), and the properties of the interfaces between the CFTs. The dual spacetimes in the holographic model include two regions separated by a dynamical interface with some tension. For two or more spatial dimensions, we find that a layer of CFT with more degrees of freedom than the surrounding one can have an anomalously large negative vacuum energy density for certain types of interfaces. The negative energy density (or null-energy density in the direction perpendicular to the interface) becomes arbitrarily large for fixed layer width when the tension of the bulk interface approaches a lower critical value. We argue that in cases where we have large negative energy density, we also have an anomalously high transition temperature to the high-temperature thermal state.


2021 ◽  
pp. 2150160
Author(s):  
N. Sarath ◽  
Titus K. Mathew

Decaying vacuum models are a class of models that incorporate a time-dependent vacuum energy density that can explain the entire evolution of the universe in a unified framework. A general solution to the Friedmann equation is obtained by considering vacuum energy density as a function of the Hubble parameter. We have obtained the asymptotic solution by choosing the equation of state for matter, [Formula: see text] and radiation, [Formula: see text]. Finite boundaries in the early and late de Sitter epoch are defined by considering the evolution of primordial perturbation wavelength. An epoch invariant number [Formula: see text] determines the number of primordial perturbation modes that cross the Hubble radius during each epoch.


2021 ◽  
Vol 4 (3) ◽  

The Cosmic Time Hypothesis (CTH) presented in this paper is a purely axiomatic theory. In contrast to today's standard model of cosmology, the ɅCDM model, it does not contain empirical parameters such as the cosmological constant Ʌ, nor does it contain sub-theories such as the inflation theory. The CTH was developed solely on the basis of the general theory of relativity (GRT), aiming for the greatest possible simplicity. The simplest cosmological model permitted by ART is the Einstein-de Sitter model. It is the basis for solving some of the fundamental problems of cosmology that concern us today. First of all, the most important results of the CTH: It solves one of the biggest problems of cosmology the problem of the cosmological constant (Ʌ)-by removing the relation between and the vacuum energy density ɛv (Λ=0, ɛv > 0). According to the CTH, the vacuum energy density ɛv is not negative and constant, as previously assumed, but positive and time-dependent (ɛv ̴ t -2). ɛv is part of the total energy density (Ɛ) of the universe and is contained in the energy-momentum tensor of Einstein's field equations. Cosmology is thus freed from unnecessary ballast, i.e. a free parameter (= natural constant) is omitted (Ʌ = 0). Conclusion: There is no "dark energy"! According to the CTH, the numerical value of the vacuum energy density v is smaller by a factor of ≈10-122 than the value calculated from quantum field theory and is thus consistent with observation. The measurement data obtained from observations of SNla supernovae, which suggest a currently accelerated expansion of the universe, result - if interpreted from the point of view of the CTH - in a decelerated expansion, as required by the Einstein-de Sitter universe. Dark matter could also possibly not exist, because the KZH demands that the "gravitational constant" is time-dependent and becomes larger the further the observed objects are spatially and thus also temporally distant from us. Gravitationally bound local systems, e.g. Earth - Moon or Sun - Earth, expand according to the same law as the universe. This explains why Hubble's law also applies within very small groups of galaxies, as observations show. The CTH requires that the strongest force (strong nuclear force) and the weakest (gravitational force) at Planck time (tp ≈10-43 seconds after the "big bang") when all forces of nature are supposed to have been united in a single super force, were of equal magnitude and had the same range. According to the KZH, the product of the strength and range of the gravitational force is constant, i.e. independent of time, and is identical to the product of the strength and range of the strong nuclear force. At Planck time, the universe had the size of an elementary particle (Rp = rE ≈10-15 m). This value also corresponds to the range of the strong nuclear force (Yukawa radius) and the Planck length at Planck time. The CTH provides a possible explanation for Mach's first and second principles. It solves some old problems of the big bang theory in a simple and natural way. The problem of the horizon, flatness, galaxy formation and the age of the world. The inflation theory thus becomes superfluous. • The CTH provides the theoretical basis for the theory of Earth expansion • In Cosmic Time, there was no Big Bang. The universe is infinitely old. • Unlike other cosmological models, the CTH does not require defined "initial conditions" because there was no beginning. • The CTH explains why the cosmic expansion is permanently in an unstable state of equilibrium, which is necessary for a long-term flat (Euclidean), evolutionarily developing universe.


2021 ◽  
Vol 67 (4 Jul-Aug) ◽  
Author(s):  
Davide Fiscaletti

A nonlinear model of Brownian motion is developed in a three-dimensional quantum vacuum defined by a variable quantum vacuum energy density corresponding to processes of creation/annihilation of virtual particles. In this model, the polarization of the quantum vacuum determined by a perturbative fluctuation of the quantum vacuum energy density associated with a fluctuating viscosity, which mimics the action of dark matter, emerges as the fundamental entity which generates the Brownian motion.


2021 ◽  
Vol 19 ◽  
pp. 134-141
Author(s):  
Sayed A. El-Mongy

Expansion of the universe is a divine fact in the glorious Quran. The accelerated expansion of the universe is one of the physics mysteries and challenges. This article is a try to find an answer to this ambiguity. A simple fusion and merging of the Newton, Einstein and quantum field equations were carried out to clarify this topic. Innovative equations correlating the acceleration (As), cosmological constant (Ʌ), vacuum energy density (ρ) and distance (d) was deduced. It can be concluded that Sayed`s acceleration constant (As) is proportional to (Ʌ/ρ), (1/8mc2) and (1/πd2). The derivative equation reveals a probable violation of the mass-energy formula (E= mc2); the speed of light might be 12.5% more. This disparity may be due to antimatter contribution; neutrino-antineutrino, β-β+ annihilation and/or a predicted unrecognized very light particle in the atom nucleus. The Sayed`s acceleration constant (As) and (As/Ʌ) ratio were calculated and found to be 6.33825x10-8 m/s2 and 5.7620475x10+44 m3/s2 respectively. Using Sayed`s equations, the calculated acceleration in planck scale is matched with the declared 5.56081x1051 m/s2 value. The The calculated recession velocity at 1 Mpc was found to be 6.5192677 x 108 m/s .and the cosmological constant (Ʌ) is as measured;~1.1x10-52 m-2


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Bobby Samir Acharya ◽  
Gerardo Aldazabal ◽  
Eduardo Andrés ◽  
Anamaría Font ◽  
Kumar Narain ◽  
...  

Abstract Superstring/M-theory compactified on compact Ricci flat manifolds have recently been conjectured to exhibit instabilities whenever the metrics do not have special holonomy. We use worldsheet conformal field theory to investigate instabilities of Type II superstring theories on compact, Ricci flat, spin 3-manifolds including a worldsheet description of their spin structures. The instabilities are signalled by the appearance of stringy tachyons at small radius and a negative (1-loop) vacuum energy density at large radius. We briefly discuss the extension to higher dimensions.


Sign in / Sign up

Export Citation Format

Share Document