Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology
Latest Publications


TOTAL DOCUMENTS

2697
(FIVE YEARS 564)

H-INDEX

47
(FIVE YEARS 6)

Published By Sage Publications

2041-305x, 1350-6501

Author(s):  
Markus Kroneis ◽  
René Scheerer ◽  
Lars Bobach ◽  
Dirk Bartel

A tribological highly stressed contact in the actuating system of axial piston machines is located between the control piston and the control chamber. This paper presents a new type of component test rig for measuring the frictional force and the gap heights between piston and cylinder. For this purpose, the original system is reduced to the actuator system, whereby the real kinematics and the loading forces are maintained. The axial movement of the control piston and the pressure in the control chamber can be configured individually. The measurement results of different parameter variations are compared with the results of the simulation. The simulation based on a coupled multibody and TEHL simulation with a transient, three-dimensional, thermal elastohydrodynamic contact calculation.


Author(s):  
Guanghui Zhang ◽  
Kefan Xu ◽  
Jiazhen Han ◽  
Yanzhong Huang ◽  
Wenjie Gong ◽  
...  

Both foil structure and surface texturing have been widely used to improve bearing performance. However, there is little research on their combination, namely, textured gas foil bearing. This paper adopts the Reynolds equation as the pressure governing equation of bump-type foil journal bearing to study the influence of textures located on the top foil. The Newton-Raphson iterative method and the perturbation method are employed to obtain static and dynamic characteristics, respectively. Thereafter, based on three texture distribution types, further analysis about the effect of the relative texture depth and the textured portion is carried out. The results indicate that an appropriate arrangement of textures could improve the performance of gas foil bearing. For #1 texture distribution, the maximum increment of load capacity could exceed 10% when ω  =  1.4 × 105 r/min, ε  =  0.2.


Author(s):  
Ivan Stebakov ◽  
Alexey Kornaev ◽  
Sergey Popov ◽  
Leonid Savin

The paper deals with the application of deep learning methods to rotating machines fault diagnosis. The main challenge is to design a fault diagnosis system connected with multisensory measurement system that will be sensitive and accurate enough in detecting weak changes in rotating machines. The experimental part of the research presents the test rig and results of high-speed multisensory measurements. Six states of a rotating machine, including a normal one and five states with loosened mounting bolts and small unbalancing of the shaft, are under study. The application of deep network architectures including multilayer perceptron, convolutional neural networks, residual networks, autoencoders and their combination was estimated. The deep learning methods allowed to identify the most informative sensors, then solve the anomaly detection and the multiclass classification problems. An autoencoder based on ResNet architecture demonstrated the best result in anomaly detection. The accuracy of the proposed network is up to 100% while the accuracy of an expert is up to 65%. A one-dimensional convolutional neural network combined with a multilayer perceptron that contains a pretrained encoder demonstrated the best result in multiclass classification. The detailed fault detection accuracy with the determination of the specific fault is 83.3%. The combinations of known deep network architectures and application of the proposed approach of pretraining of the encoders together with using a block of inputs for one prediction demonstrated high efficiency.


Author(s):  
Saša Vasiljević ◽  
Jasna Glišović ◽  
Blaža Stojanović ◽  
Aleksandar Vencl

Wear of a friction pair of brake (brake disc and pads), in addition to reducing the active safety of vehicles, leads to the formation of particles that can affect the environment and human health. In addition to the technologies that are being developed for the collection of particles created by the wear of brakes during braking process, today new materials are being introduced, as well as various technologies for processing friction pairs with the aim of reducing brake wear and thus the formation of particles. Furthermore, today, technologies for coating (cladding) the friction surfaces of disc brakes with some materials are increasingly applied and researched, in order to reduce the wear intensity (wear rate) of disc brakes, i.e. the emission of particles created by wear of friction pairs. The aim of this paper is to analyse and review different deposition techniques and materials used for brake discs coatings, as well as the effect it has on the wear rate of friction pair. There are many coating deposition techniques, and special attention is paid to the technology of laser hardfacing of brake rotors.


Author(s):  
Ryo Sadahiro ◽  
Syota Nakayama ◽  
Shouhei Kawada ◽  
Masaaki Miyatake ◽  
Shinya Sasaki ◽  
...  

Aerostatic porous bearings have been applied widely in precision devices to achieve higher accuracy of motion. Conventional aerostatic porous bearings are made of porous graphite, porous ceramics or sintered metal porous material, having a thickness of several millimetres and a surface-restricted layer. However, during mass production of porous bearings, the time required for the production of the porous materials and the surface restriction treatment leads to an increase in the manufacturing time and cost of the porous bearings. Accordingly, to overcome this problem, an aerostatic porous bearing with a layer thickness of several hundred µm and a support member, manufactured using metal 3D printing technology, is proposed. In this study, the optimum conditions for manufacturing the proposed aerostatic porous bearings with a direct metal laser sintering method 3D printer were investigated, and characteristics of the prototype of the proposed bearings were investigated experimentally.


Author(s):  
Guoda Chen ◽  
Qi Lu ◽  
Yifan Ge ◽  
Wei Zhang

This paper studied the air film pressure field (AFPF) characteristics of aerostatic thrust bearing, in which we proposed the measurement equipment for the 2D AFPF and successfully verified the theoretical simulation results. The experimental results agreed well with the theoretical results. However, in the area between the distribution circle of orifice to the air film outlet boundary, the experimental air film pressure (AFP) was slightly higher than the theoretical one. While for the area between the distribution circle of orifice and the center of the bearing, it showed the opposite law. Besides, the increase ratio of the AFP was close to that of the external load with its increase.


Author(s):  
Lin Zhong ◽  
Guirong Kang ◽  
Guorong Wang ◽  
Gang Wei ◽  
Zixuan Wang ◽  
...  

The failure of bit bearings is one of the main factors that restrict the life of a bit, and studies revealed that sealing and adhesive wear failure are common failure modes of bit bearings. To study the adaptability of the optimal textures to anti-wear and anti-friction performance of an 8 1/2” rock bit journal bearingunder sealing leakage conditions, the rheological properties of grease in the range of 0%–50% of the water-based drilling fluid volume in the compound lithium-based grease (rock bit grease) were tested. For the cylindrical dimples (diameter: 300 μm; depth: 40 μm, area ratio: 5%) and elliptical dimples (major and minor axis of 720 and 360 μm, respectively; depth: 40 μm, area ratio: 10%), the experimental study on the wear resistance of the optimized texture tribo-pairs was carried out as the grease invaded different drilling fluid contents based on the pin-disk pair. Results showed that the drilling fluid volume in the rock bit grease significantly affected the rheological properties of the grease. Furthermore, the cylindrical and elliptical dimples still had good anti-wear and anti-friction effects. Especially when the drilling fluid volume ratios in the grease reached 50%, the elliptical dimples can still reduce the friction coefficient and wear amount of the pair by 19.88% and 56.99%, respectively. With the increase of drilling fluid invasion into grease, the wear morphology of the un-textured tribo-pairs showed that the wear form changed from abrasive to adhesive wear, while that of the preferred textured tribo-pairs indicated slight abrasive wear.


Author(s):  
Niranjan Singh ◽  
R K Awasthi

Surface texturing can improve the performance of journal bearing system. The present study theoretically investigates the impact of surface textures on the dynamic stability and performance parameters of two-lobe journal bearing system. Galerkin's finite element method is used to solve the Reynolds equation governing the flow of lubricant in the gap between the bearing and the journal. Reynolds boundary conditions are applied in the simulation study of plain, full-textured, partially textured-I and partially textured-II configurations of two-lobe journal bearing. The dynamic stability and performance parameters of textured two-lobe journal bearings are computed with the variation of eccentricity ratio and dimple depth and compared with circular bearing results. The results indicate that the existence of surface textures in the pressure build-up zone ranging from 126°–286° and at unity dimple aspect ratio can significantly improve the dynamic stability and performance parameters of two-lobe bearing system.


Author(s):  
Braun Minel J. Distinguished Professor Emeritus
Keyword(s):  

Author(s):  
Debabrata Panda ◽  
Krunal M Gangawane

Polymer-based composites have been widely used in the enhanced tribological technologies of various automobile, aerospace industry, sports, etc. The epoxy-based polymer composites reinforced with glass fiber have significantly improved the wear inhibitors and ultimate strength along with ultra-low density than other available materials. This current research aims to fabricate a variation of such non-woven viscose-based polymer composites for various weight fractions (100–400 GSM) with a constant fiber loading of 30 wt% and subsequently analyze its physical, mechanical, and tribological properties under various operating parameters. The density of the fabricated composite exhibits an increase of magnitude with an increase in weight fraction. The composites consist of 400 GSM fabric showing a higher tensile, impact, flexural strength, hardness, and inter lamina shear strength (ILSS). A pin-on-disc wear set-up held dry sliding wear tests of various nonwoven viscose fabric-based composites under various operating parameters like sliding velocity, sliding distance, area density, and normal load. A Taguchi-based L16 orthogonal array design was utilized to estimate the optimal behavior for maximum wear resistance for operating conditions. The result reveals that the normal load over the composite contributes the highest towards wear on a composite compared to area density, sliding velocity, and distance. The wear phenomena have been verified with SEM micrographs to characterize various wear phenomena like fiber rapture, ploughing, micro-cracks, and wear lines.


Sign in / Sign up

Export Citation Format

Share Document