Experimental Study on the Electrical Conductivity of Pyroxene Andesite at High Temperature and High Pressure

2016 ◽  
Vol 174 (3) ◽  
pp. 1033-1041 ◽  
Author(s):  
KeShi Hui ◽  
LiDong Dai ◽  
HePing Li ◽  
HaiYing Hu ◽  
JianJun Jiang ◽  
...  
2001 ◽  
Vol 44 (3) ◽  
pp. 427-434 ◽  
Author(s):  
Mao-Xu ZHU ◽  
Hong-Sen XIE ◽  
Jie GUO ◽  
Zu-Ming XU

2005 ◽  
Vol 79 (6) ◽  
pp. 803-809 ◽  
Author(s):  
DAI Lidong ◽  
LI Heping ◽  
LIU Congqiang ◽  
SHAN Shuangming ◽  
CUI Tongdi ◽  
...  

2019 ◽  
Author(s):  
Mohd Fakrumie Zaidin ◽  
Budi Priyatna Kantaatmadja ◽  
Antonin Chapoy ◽  
Pehzman Ahmadi ◽  
Rod Burgass

Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 75 ◽  
Author(s):  
Linfei Yang ◽  
Lidong Dai ◽  
Heping Li ◽  
Haiying Hu ◽  
Meiling Hong ◽  
...  

The phase stability of epsomite under a high temperature and high pressure were explored through Raman spectroscopy and electrical conductivity measurements in a diamond anvil cell up to ~623 K and ~12.8 GPa. Our results verified that the epsomite underwent a pressure-induced phase transition at ~5.1 GPa and room temperature, which was well characterized by the change in the pressure dependence of Raman vibrational modes and electrical conductivity. The dehydration process of the epsomite under high pressure was monitored by the variation in the sulfate tetrahedra and hydroxyl modes. At a representative pressure point of ~1.3 GPa, it was found the epsomite (MgSO4·7H2O) started to dehydrate at ~343 K, by forming hexahydrite (MgSO4·6H2O), and then further transformed into magnesium sulfate trihydrate (MgSO4·3H2O) and anhydrous magnesium sulfate (MgSO4) at higher temperatures of 373 and 473 K, respectively. Furthermore, the established P-T phase diagram revealed a positive relationship between the dehydration temperature and the pressure for epsomite.


2012 ◽  
Vol 594-597 ◽  
pp. 2073-2076
Author(s):  
Zhong Fei Ma ◽  
Li Chen ◽  
Fu Qin Wang

In order to improve the cooling effect and practical applicability of falling temperature technique on high-temperature workplaces, the aeration and cooling principle of the high pressure water rotational jetting ventilation were analysed, and the experimental study was carried out. The results show that water pressure and cooling rate are an approximation of parabolic growth relationship, different structure of jet tube and temperature difference on water and gas also have an obvious effect on the cooling amplitude and air quantity. the guide vanes installed may improve effect of ventilation and cooling the capacity on high pressure water rotational jetting.


2020 ◽  
Author(s):  
Sarah Incel

<p>Impact rocks often reveal particular structures, e.g. shock-induced amorphization and melting of crystals, that formed due to high stresses during shock metamorphism. This experimental study presents four granulite samples that were deformed in a D-DIA apparatus at 2.5 GPa and 3 GPa and at either 1023 K, 1173 K, or at 995 to 1225 K. During deformation of two samples (2.5 GPa and either 995-1125 K or 1173 K) 82 and 794 acoustic emissions (AEs) were recorded, respectively, whereas less than 10 AEs were recorded while deforming the other two granulite sample (3 GPa and 995-1225 K; 2.5 and 1073 K). Microstructures of the samples that emitted 82 and 794 AEs reveal amorphous patches that are absent in the samples corresponding to the runs in which <10 AEs were recorded, indicating a link between AE-activity and amorphization of plagioclase. The contacts between amorphous patches and host-plagioclase crystals are very sharp and amorphization predominantly occurred along two distinct planes inclined at approx. 45° towards the direction of maximum compression. Surrounding the patches, the hosts show extensive fragmentation. Chemical analyses of the amorphous patches demonstrate an enrichment in potassium and silicon relative to the initial plagioclase chemistry and the growth of euhedral quartz crystals within the patches. Such microstructures were previously found in naturally or experimentally shocked rocks and interpreted as shock melts. The occurrence of structures, revealing striking similarities to shock melts, in experimental samples that underwent embrittlement at high-pressure, high-temperature conditions below the sample’s solidus (~1377 K) suggests melting due to elevated transient stresses, e.g. during rupture processes.</p>


Sign in / Sign up

Export Citation Format

Share Document