Recent Seismic Activity in the Bejaia–Babors Region (Northeastern Algeria): The Case of the 2012–2013 Bejaia Earthquake Sequences

Author(s):  
Oualid Boulahia ◽  
Issam Abacha ◽  
AbdelKarim Yelles-Chaouche ◽  
Hichem Bendjama ◽  
Abdelaziz Kherroubi ◽  
...  
1965 ◽  
Vol 55 (1) ◽  
pp. 85-106 ◽  
Author(s):  
Agustin Udias

Abstract The earthquake sequences connected with the earthquakes of August 31 and September 14, 1963 in the Salinas-Watsonville region of California are here studied with reference to the background seismic activity. A very favorable distribution of permanent and mobile stations in this area permits the analysis to include earthquakes of small magnitudes. The mechanism of the larger aftershocks of both sequences is found to be similar to the mechanism of the main shock of September 14, 1963. The orientation of the principal axes of stress derived from the focal mechanism of the September 14 earthquake, is related to the strike of the San Andreas fault.


1986 ◽  
Vol 23 (A) ◽  
pp. 291-310 ◽  
Author(s):  
Yosihiko Ogata ◽  
Koichi Katsura

It is demonstrated that linear parametrization of the conditional intensity provides systematic classes of flexible models which are reasonably useful for calculating maximum likelihoods. To exemplify the modelling, seismic activity around Canberra is decomposed into components of evolutionary trend, clustering and periodicity. The causal relationship between earthquake sequences from two seismic regions is also analysed for a certain Japanese earthquake data set.Some technical aspects of the modelling and calculations are described.


1986 ◽  
Vol 23 (A) ◽  
pp. 291-310 ◽  
Author(s):  
Yosihiko Ogata ◽  
Koichi Katsura

It is demonstrated that linear parametrization of the conditional intensity provides systematic classes of flexible models which are reasonably useful for calculating maximum likelihoods. To exemplify the modelling, seismic activity around Canberra is decomposed into components of evolutionary trend, clustering and periodicity. The causal relationship between earthquake sequences from two seismic regions is also analysed for a certain Japanese earthquake data set. Some technical aspects of the modelling and calculations are described.


2001 ◽  
Vol 38 (A) ◽  
pp. 213-221 ◽  
Author(s):  
Li Ma ◽  
Jiancang Zhuang

This paper uses the epidemic-type aftershock sequence (ETAS) point process model to study certain seismicity features of the Jiashi swarm of certain earthquakes, investigating in particular whether there is relative quiescence prior to the quite big events within the Jiashi sequence. The seven earthquake sequences studied occurred in the region of Jiashi, south of Tianshan Mountain, Xinjiang, China. The particular ETAS model that is developed is consistent with the reality of seismic activity. The various features of Jiashi swarm activity can be described as focusing in different stages. There is obvious precursory quiescence prior to most big events with Ms ≥ 6.0 within the Jiashi swarm. Thus, checking for relative quiescence can be use for earthquake prediction.


2001 ◽  
Vol 38 (A) ◽  
pp. 213-221 ◽  
Author(s):  
Li Ma ◽  
Jiancang Zhuang

This paper uses the epidemic-type aftershock sequence (ETAS) point process model to study certain seismicity features of the Jiashi swarm of certain earthquakes, investigating in particular whether there is relative quiescence prior to the quite big events within the Jiashi sequence. The seven earthquake sequences studied occurred in the region of Jiashi, south of Tianshan Mountain, Xinjiang, China. The particular ETAS model that is developed is consistent with the reality of seismic activity. The various features of Jiashi swarm activity can be described as focusing in different stages. There is obvious precursory quiescence prior to most big events with Ms ≥ 6.0 within the Jiashi swarm. Thus, checking for relative quiescence can be use for earthquake prediction.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

High-volume hydraulic fracturing combined with horizontal drilling has “revolutionized” the United States’ oil and gas industry by allowing extraction of previously inaccessible oil and gas trapped in shale rock [1]. Although the United States has extracted shale gas in different states for several decades, the United Kingdom is in the early stages of developing its domestic shale gas resources, in the hopes of replicating the United States’ commercial success with the technologies [2, 3]. However, the extraction of shale gas using hydraulic fracturing and horizontal drilling poses potential risks to the environment and natural resources, human health, and communities and local livelihoods. Risks include contamination of water resources, air pollution, and induced seismic activity near shale gas operation sites. This paper examines the regulation of potential induced seismic activity in Oklahoma, USA, and Lancashire, UK, and concludes with recommendations for strengthening these protections.


Sign in / Sign up

Export Citation Format

Share Document