Stability of a Monomial Functional Equation on Restricted Domains of Lebesgue Measure Zero

2017 ◽  
Vol 72 (4) ◽  
pp. 2067-2077 ◽  
Author(s):  
Chang-Kwon Choi
2017 ◽  
Vol 60 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Chang-Kwon Choi ◽  
Jaeyoung Chung ◽  
Yumin Ju ◽  
John Rassias

AbstractLet X be a real normed space, Y a Banach space, and f : X → Y. We prove theUlam–Hyers stability theorem for the cubic functional equationin restricted domains. As an application we consider a measure zero stability problem of the inequalityfor all (x, y) in Γ ⸦ ℝ2 of Lebesgue measure 0.


Author(s):  
Youssef Aribou ◽  
Hajira Dimou ◽  
Abdellatif Chahbi ◽  
Samir Kabbaj

Abstract In this paper we prove the Hyers-Ulam stability of the following K-quadratic functional equationwhere E is a real (or complex) vector space. This result was used to demonstrate the Hyers-Ulam stability on a set of Lebesgue measure zero for the same functional equation.


1991 ◽  
Vol 56 (1) ◽  
pp. 103-107
Author(s):  
Maxim R. Burke

AbstractWe investigate the cofinality of the partial order κ of functions from a regular cardinal κ into the ideal of Lebesgue measure zero subsets of R. We show that when add () = κ and the covering lemma holds with respect to an inner model of GCH, then cf (κ) = max{cf(κκ), cf([cf()]κ)}. We also give an example to show that the covering assumption cannot be removed.


2008 ◽  
Vol 51 (2) ◽  
pp. 337-362 ◽  
Author(s):  
Torben Fattler ◽  
Martin Grothaus

AbstractWe give a Dirichlet form approach for the construction and analysis of elliptic diffusions in $\bar{\varOmega}\subset\mathbb{R}^n$ with reflecting boundary condition. The problem is formulated in an $L^2$-setting with respect to a reference measure $\mu$ on $\bar{\varOmega}$ having an integrable, $\mathrm{d} x$-almost everywhere (a.e.) positive density $\varrho$ with respect to the Lebesgue measure. The symmetric Dirichlet forms $(\mathcal{E}^{\varrho,a},D(\mathcal{E}^{\varrho,a}))$ we consider are the closure of the symmetric bilinear forms\begin{gather*} \mathcal{E}^{\varrho,a}(f,g)=\sum_{i,j=1}^n\int_{\varOmega}\partial_ifa_{ij} \partial_jg\,\mathrm{d}\mu,\quad f,g\in\mathcal{D}, \\ \mathcal{D}=\{f\in C(\bar{\varOmega})\mid f\in W^{1,1}_{\mathrm{loc}}(\varOmega),\ \mathcal{E}^{\varrho,a}(f,f)\lt\infty\}, \end{gather*}in $L^2(\bar{\varOmega},\mu)$, where $a$ is a symmetric, elliptic, $n\times n$-matrix-valued measurable function on $\bar{\varOmega}$. Assuming that $\varOmega$ is an open, relatively compact set with boundary $\partial\varOmega$ of Lebesgue measure zero and that $\varrho$ satisfies the Hamza condition, we can show that $(\mathcal{E}^{\varrho,a},D(\mathcal{E}^{\varrho,a}))$ is a local, quasi-regular Dirichlet form. Hence, it has an associated self-adjoint generator $(L^{\varrho,a},D(L^{\varrho,a}))$ and diffusion process $\bm{M}^{\varrho,a}$ (i.e. an associated strong Markov process with continuous sample paths). Furthermore, since $1\in D(\mathcal{E}^{\varrho,a})$ (due to the Neumann boundary condition) and $\mathcal{E}^{\varrho,a}(1,1)=0$, we obtain a conservative process $\bm{M}^{\varrho,a}$ (i.e. $\bm{M}^{\varrho,a}$ has infinite lifetime). Additionally, assuming that $\sqrt{\varrho}\in W^{1,2}(\varOmega)\cap C(\bar{\varOmega})$ or that $\varrho$ is bounded, $\varOmega$ is convex and $\{\varrho=0\}$ has codimension at least 2, we can show that the set $\{\varrho=0\}$ has $\mathcal{E}^{\varrho,a}$-capacity zero. Therefore, in this case we can even construct an associated conservative diffusion process in $\{\varrho>0\}$. This is essential for our application to continuous $N$-particle systems with singular interactions. Note that for the construction of the self-adjoint generator $(L^{\varrho,a},D(L^{\varrho,a}))$ and the Markov process $\bm{M}^{\varrho,a}$ we do not need to assume any differentiability condition on $\varrho$ and $a$. We obtain the following explicit representation of the generator for $\sqrt{\varrho}\in W^{1,2}(\varOmega)$ and $a\in W^{1,\infty}(\varOmega)$:$$ L^{\varrho,a}=\sum_{i,j=1}^n\partial_i(a_{ij}\partial_j)+\partial_i(\log\varrho)a_{ij}\partial_j. $$Note that the drift term can be singular, because we allow $\varrho$ to be zero on a set of Lebesgue measure zero. Our assumptions in this paper even allow a drift that is not integrable with respect to the Lebesgue measure.


2016 ◽  
Vol 23 (3) ◽  
pp. 387-391
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that the difference between a Vitali–Bernstein selector and a partial Vitali–Bernstein selector can be of Lebesgue measure zero and of first Baire category. This result gives an answer to a question posed by G. Lazou.


Author(s):  
Mareike Wolff

AbstractLet $$g(z)=\int _0^zp(t)\exp (q(t))\,dt+c$$ g ( z ) = ∫ 0 z p ( t ) exp ( q ( t ) ) d t + c where p, q are polynomials and $$c\in {\mathbb {C}}$$ c ∈ C , and let f be the function from Newton’s method for g. We show that under suitable assumptions on the zeros of $$g''$$ g ′ ′ the Julia set of f has Lebesgue measure zero. Together with a theorem by Bergweiler, our result implies that $$f^n(z)$$ f n ( z ) converges to zeros of g almost everywhere in $${\mathbb {C}}$$ C if this is the case for each zero of $$g''$$ g ′ ′ that is not a zero of g or $$g'$$ g ′ . In order to prove our result, we establish general conditions ensuring that Julia sets have Lebesgue measure zero.


1972 ◽  
Vol 24 (5) ◽  
pp. 957-966 ◽  
Author(s):  
G. J. Butler ◽  
F. B. Richards

Let 1 be a subdivision of [0, 1], and let denote the class of functions whose restriction to each sub-interval is a polynomial of degree at most k. Gaier [1] has shown that for uniform subdivisions △n (that is, subdivisions for which if and only if f is a polynomial of degree at most k. Here, and subsequently, denotes the usual norm in Lp[0, 1], 1 ≦ p ≦ ∞, and we should emphasize that functions differing only on a set of Lebesgue measure zero are identified.


Sign in / Sign up

Export Citation Format

Share Document