scholarly journals Elementary Polynomial Identities Involving $$\varvec{q}$$-Trinomial Coefficients

2019 ◽  
Vol 23 (3-4) ◽  
pp. 549-560 ◽  
Author(s):  
Alexander Berkovich ◽  
Ali Kemal Uncu

Abstract We use the q-binomial theorem to prove three new polynomial identities involving q-trinomial coefficients. We then use summation formulas for the q-trinomial coefficients to convert our identities into another set of three polynomial identities, which imply Capparelli’s partition theorems when the degree of the polynomial tends to infinity. This way we also obtain an interesting new result for the sum of the Capparelli’s products. We finish this paper by proposing an infinite hierarchy of polynomial identities.

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1102
Author(s):  
Yashoverdhan Vyas ◽  
Hari M. Srivastava ◽  
Shivani Pathak ◽  
Kalpana Fatawat

This paper provides three classes of q-summation formulas in the form of general contiguous extensions of the first q-Kummer summation theorem. Their derivations are presented by using three methods, which are along the lines of the three types of well-known proofs of the q-Kummer summation theorem with a key role of the q-binomial theorem. In addition to the q-binomial theorem, the first proof makes use of Thomae’s q-integral representation and the second proof needs Heine’s transformation. Whereas the third proof utilizes only the q-binomial theorem. Subsequently, the applications of these summation formulas in obtaining the general contiguous extensions of the second and the third q-Kummer summation theorems are also presented. Furthermore, the investigated results are specialized to give many of the known as well as presumably new q-summation theorems, which are contiguous to the three q-Kummer summation theorems. This work is motivated by the observation that the basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) gamma and q-hypergeometric functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse areas including Number Theory, Theory of Partitions and Combinatorial Analysis as well as in the study of Combinatorial Generating Functions. Just as it is known in the theory of the Gauss, Kummer (or confluent), Clausen and the generalized hypergeometric functions, the parameters in the corresponding basic or quantum (or q-) hypergeometric functions are symmetric in the sense that they remain invariant when the order of the p numerator parameters or when the order of the q denominator parameters is arbitrarily changed. A case has therefore been made for the symmetry possessed not only by hypergeometric functions and basic or quantum (or q-) hypergeometric functions, which are studied in this paper, but also by the symmetric quantum calculus itself.


2019 ◽  
Vol 201 ◽  
pp. 77-107 ◽  
Author(s):  
Alexander Berkovich ◽  
Ali Kemal Uncu

Author(s):  
Francesca Cioffi ◽  
Davide Franco ◽  
Carmine Sessa

AbstractLet $$\mathcal S$$ S be a single condition Schubert variety with an arbitrary number of strata. Recently, an explicit description of the summands involved in the decomposition theorem applied to such a variety has been obtained in a paper of the second author. Starting from this result, we provide an explicit description of the Poincaré polynomial of the intersection cohomology of $$\mathcal S$$ S by means of the Poincaré polynomials of its strata, obtaining interesting polynomial identities relating Poincaré polynomials of several Grassmannians, both by a local and by a global point of view. We also present a symbolic study of a particular case of these identities.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Antoine F. J. Runge ◽  
Y. Long Qiang ◽  
Tristram J. Alexander ◽  
M. Z. Rafat ◽  
Darren D. Hudson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document