Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process

2004 ◽  
Vol 4 (2) ◽  
Author(s):  
Martin Ondrej�t
Author(s):  
CARLO MARINELLI ◽  
MICHAEL RÖCKNER

In the semigroup approach to stochastic evolution equations, the fundamental issue of uniqueness of mild solutions is often "reduced" to the much easier problem of proving uniqueness for strong solutions. This reduction is usually carried out in a formal way, without really justifying why and how one can do that. We provide sufficient conditions for uniqueness of mild solutions to a broad class of semilinear stochastic evolution equations with coefficients satisfying a monotonicity assumption.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Jung-Chan Chang ◽  
Hsiang Liu

This paper is concerned with the existence of mild and strong solutions for a class of semilinear evolution equations with nonlocal initial conditions. The linear part is assumed to be a (not necessarily densely defined) sectorial operator in a Banach spaceX. Considering the equations in the norm of some interpolation spaces betweenXand the domain of the linear part, we generalize the recent conclusions on this topic. The obtained results will be applied to a class of semilinear functional partial differential equations with nonlocal conditions.


1998 ◽  
Vol 13 (19) ◽  
pp. 1565-1573 ◽  
Author(s):  
B. K. BERGER ◽  
D. GARFINKLE ◽  
J. ISENBERG ◽  
V. MONCRIEF ◽  
M. WEAVER

A longstanding conjecture by Belinskii, Khalatnikov and Lifshitz that the singularity in generic gravitational collapse is spacelike, local and oscillatory is explored analytically and numerically in spatially inhomogeneous cosmological space–times. With a convenient choice of variables, it can be seen analytically how nonlinear terms in Einstein's equations control the approach to the singularity and cause oscillatory behavior. The analytic picture requires the drastic assumption that each spatial point evolves toward the singularity as an independent spatially homogeneous universe. In every case, detailed numerical simulations of the full Einstein evolution equations support this assumption.


Sign in / Sign up

Export Citation Format

Share Document