scholarly journals Existence and uniqueness of global strong solutions to fully nonlinear second order elliptic systems

Author(s):  
Nikos Katzourakis
2001 ◽  
Vol 6 (1) ◽  
pp. 147-155 ◽  
Author(s):  
S. Rutkauskas

The Dirichlet type problem for the weakly related elliptic systems of the second order degenerating at an inner point is discussed. Existence and uniqueness of the solution in the Holder class of the vector‐functions is proved.


2021 ◽  
pp. 293-303
Author(s):  
N.A. Larkin

Initial boundary value problems for the three-dimensional Kuramoto-Sivashinsky equation posed on unbounded 3D grooves (that may serve as mathematical models for wildfires) were considered. The existence and uniqueness of global strong solutions as well as their exponential decay have been established.


2016 ◽  
Vol 8 (1) ◽  
pp. 79-100 ◽  
Author(s):  
Stanislav Antontsev ◽  
Sergey Shmarev

Abstract We study the homogeneous Dirichlet problem for the fully nonlinear equation u_{t}=|\Delta u|^{m-2}\Delta u-d|u|^{\sigma-2}u+f\quad\text{in ${Q_{T}=\Omega% \times(0,T)}$,} with the parameters {m>1} , {\sigma>1} and {d\geq 0} . At the points where {\Delta u=0} , the equation degenerates if {m>2} , or becomes singular if {m\in(1,2)} . We derive conditions of existence and uniqueness of strong solutions, and study the asymptotic behavior of strong solutions as {t\to\infty} . Sufficient conditions for exponential or power decay of {\|\nabla u(t)\|_{2,\Omega}} are derived. It is proved that for certain ranges of the exponents m and σ, every strong solution vanishes in a finite time.


Sign in / Sign up

Export Citation Format

Share Document