Function Theories in Cayley-Dickson Algebras and Number Theory
AbstractIn the recent years a lot of effort has been made to extend the theory of hyperholomorphic functions from the setting of associative Clifford algebras to non-associative Cayley-Dickson algebras, starting with the octonions.An important question is whether there appear really essentially different features in the treatment with Cayley-Dickson algebras that cannot be handled in the Clifford analysis setting. Here we give one concrete example: Cayley-Dickson algebras admit the construction of direct analogues of so-called CM-lattices, in particular, lattices that are closed under multiplication.Canonical examples are lattices with components from the algebraic number fields $$\mathbb{Q}{[\sqrt{m1}, \ldots \sqrt{mk}]}$$ Q [ m 1 , … mk ] . Note that the multiplication of two non-integer lattice paravectors does not give anymore a lattice paravector in the Clifford algebra. In this paper we exploit the tools of octonionic function theory to set up an algebraic relation between different octonionic generalized elliptic functions which give rise to octonionic elliptic curves. We present explicit formulas for the trace of the octonionic CM-division values.