scholarly journals Function Theories in Cayley-Dickson Algebras and Number Theory

Author(s):  
Rolf Sören Kraußhar

AbstractIn the recent years a lot of effort has been made to extend the theory of hyperholomorphic functions from the setting of associative Clifford algebras to non-associative Cayley-Dickson algebras, starting with the octonions.An important question is whether there appear really essentially different features in the treatment with Cayley-Dickson algebras that cannot be handled in the Clifford analysis setting. Here we give one concrete example: Cayley-Dickson algebras admit the construction of direct analogues of so-called CM-lattices, in particular, lattices that are closed under multiplication.Canonical examples are lattices with components from the algebraic number fields $$\mathbb{Q}{[\sqrt{m1}, \ldots \sqrt{mk}]}$$ Q [ m 1 , … mk ] . Note that the multiplication of two non-integer lattice paravectors does not give anymore a lattice paravector in the Clifford algebra. In this paper we exploit the tools of octonionic function theory to set up an algebraic relation between different octonionic generalized elliptic functions which give rise to octonionic elliptic curves. We present explicit formulas for the trace of the octonionic CM-division values.

1955 ◽  
Vol 9 ◽  
pp. 115-118 ◽  
Author(s):  
Tomio Kubota

We shall prove in the present note a theorem on units of algebraic number fields, applying one of the strongest formulations, be Hasse [3], of Grunwald’s existence theorem.


1991 ◽  
Vol 124 ◽  
pp. 133-144 ◽  
Author(s):  
Masanori Morishita

As an interpretation and a generalization of Gauss’ genus theory on binary quadratic forms in the language of arithmetic of algebraic tori, Ono [02] established an equality between a kind of “Euler number E(K/k)” for a finite Galois extension K/k of algebraic number fields and other arithmetical invariants associated to K/k. His proof depended on his Tamagawa number formula [01] and Shyr’s formula [Sh] which follows from the analytic class number formula of a torus. Later, two direct proofs were given by Katayama [K] and Sasaki [Sa].


2012 ◽  
Vol 27 (22) ◽  
pp. 1250112
Author(s):  
ROLF SCHIMMRIGK

In this paper the problem of constructing space–time from string theory is addressed in the context of D-brane physics. It is suggested that the knowledge of discrete configurations of D-branes is sufficient to reconstruct the motivic building blocks of certain Calabi–Yau varieties. The collections of D-branes involved have algebraic base points, leading to the notion of K-arithmetic D-crystals for algebraic number fields K. This idea can be tested for D0-branes in the framework of toroidal compactifications via the conjectures of Birch and Swinnerton-Dyer. For the special class of D0-crystals of Heegner type these conjectures can be interpreted as formulae that relate the canonical Néron–Tate height of the base points of the D-crystals to special values of the motivic L-function at the central point. In simple cases the knowledge of the D-crystals of Heegner type suffices to uniquely determine the geometry.


Sign in / Sign up

Export Citation Format

Share Document