Inertial effect on frequency synchronization for the second-order Kuramoto model with local coupling

Author(s):  
Rui Wang ◽  
Wen-Xin Qin
2021 ◽  
Vol 31 (11) ◽  
pp. 113113
Author(s):  
Nikita V. Barabash ◽  
Vladimir N. Belykh ◽  
Grigory V. Osipov ◽  
Igor V. Belykh

2018 ◽  
Vol 16 (04) ◽  
pp. 525-563 ◽  
Author(s):  
Seung-Yeal Ha ◽  
Hwa Kil Kim ◽  
Jinyeong Park

The synchronous dynamics of many limit-cycle oscillators can be described by phase models. The Kuramoto model serves as a prototype model for phase synchronization and has been extensively studied in the last 40 years. In this paper, we deal with the complete synchronization problem of the Kuramoto model with frustrations on a complete graph. We study the robustness of complete synchronization with respect to the network structure and the interaction frustrations, and provide sufficient frameworks leading to the complete synchronization, in which all frequency differences of oscillators tend to zero asymptotically. For a uniform frustration and unit capacity, we extend the applicable range of initial configurations for the complete synchronization to be distributed on larger arcs than a half circle by analyzing the detailed dynamics of the order parameters. This improves the earlier results [S.-Y. Ha, H. Kim and J. Park, Remarks on the complete frequency synchronization of Kuramoto oscillators, Nonlinearity 28 (2015) 1441–1462; Z. Li and S.-Y. Ha, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci. 26 (2016) 357–382.] which can be applicable only for initial configurations confined in a half circle.


2014 ◽  
Vol 960-961 ◽  
pp. 1054-1057
Author(s):  
Liu Yang ◽  
Yu Feng Guo ◽  
Ning Chen ◽  
Min Hui Qian ◽  
Xiao Ping Xue ◽  
...  

Based on frequency synchronization theory of the second-order non-uniform Kuramoto model, a novel approach for power system transient stability analysis is put forward by establishing the correspondence between the classic power system model and the second-order non-uniform Kuramoto model. This method relates network parameters with the region of attraction of the disturbed system’s stable equilibrium and thus the transient stability information of the disturbed system can be obtained by comparing the initial configuration with trapping region of the stable equilibrium of the disturbance-canceling system. The application of our approach to single machine infinite bus system shows that this method features a fast computation speed. It can determine the transient stability of the system when a certain perturbation acts on as well as offer the stability margin of the disturbed system, which is of great importance for practical use.


2015 ◽  
Vol 91 (5) ◽  
Author(s):  
Thomas K. DM. Peron ◽  
Peng Ji ◽  
Francisco A. Rodrigues ◽  
Jürgen Kurths
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document