complete frequency
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 2)

Machines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 204
Author(s):  
Kai Xu ◽  
Xing Wu ◽  
Xiaoqin Liu ◽  
Dongxiao Wang

The difficulty of adding external excitation and the asynchronous data collection from the industrial robot operation limited the online parameter identification of industrial robots. In this regard, this study proposes an identification method that only uses the amplitude of the frequency response function (FRF) of the system to identify robot joint torsional stiffness and dynamic parameters. The error criterion function shows that this method is feasible and comparable to applying the complete frequency response for identification. The Levenberg–Marquardt (L-M) algorithm is used to find the global optimal value of the error criterion function. In addition, an operational excitation method is proposed to excite the system. The speed profile is set as a triangle wave to excite the system using rectangular wave electromagnetic torques. The simulation results show that using the amplitude of the FRF to identify parameters applies to asynchronous data. The experiments on a single-degree-of-freedom articulated arm test bench show that the motion excitation method is effective, and both stiffness and inertia are identifiable.


2021 ◽  
Vol 11 (2) ◽  
pp. 510-530
Author(s):  
J. Abdul Aziz Khan ◽  
P. Shanmugaraja ◽  
S. Kannan

This work presents the enhanced area-efficient Multi-channel MEMS (Micro-Electrical Mechanical System) piezoelectric cantilever device (PCD) for a fully cochlear implantable sensor that works within the audible frequency range of 300-4800 Hz. The sound pressure level (SPL) of 95 dB, 100 dB, and 110 dB input is given in order to resonates the audible frequency range of the device which is placed on the eardrum. This stimulates the auditory nerve via the cochlea to send information to the brain. As a result, the Multi-channel MEMS piezoelectric cantilever device generates the highest potential voltage of 870 mV at 110-dB SPL and is detected under the excitation of 300 Hz. The output parameters such as von Mises stress, displacement, and the complete frequency bandwidth performance are analyzed using COMSOL Multiphysics.


2020 ◽  
Vol 10 (12) ◽  
pp. 4160 ◽  
Author(s):  
Daivd A. Elvira-Ortiz ◽  
Daniel Morinigo-Sotelo ◽  
Angel L. Zorita-Lamadrid ◽  
Roque A. Osornio-Rios ◽  
Rene de J. Romero-Troncoso

Broken rotor bar (BRB) is one of the most common failures in induction motors (IMs) these days; however, its identification is complicated since the frequencies associated with the fault condition appear near the fundamental frequency component (FFC). This situation gets worse when the IM slip or the operation frequency is low. In these circumstances, the common techniques for condition monitoring may experience troubles in the identification of a faulty condition. By suppressing the FFC, the fault detection is enhanced, allowing the identification of BRB even at low slip conditions. The main contribution of this work consists of the development of a preprocessing technique that estimates the FFC from an optimization point of view. This way, it is possible to remove a single frequency component instead of removing a complete frequency band from the current signals of an IM. Experimentation is performed on an IM operating at two different frequencies and at three different load levels. The proposed methodology is compared with two different approaches and the results show that the use of the proposed methodology allows to enhance the performance delivered by the common methodologies for the detection of BRB in steady state.


2019 ◽  
Vol 17 ◽  
pp. 83-89
Author(s):  
Fabian T. Faul ◽  
Jonas Kornprobst ◽  
Torsten Fritzel ◽  
Hans-Jürgen Steiner ◽  
Rüdiger Strauß ◽  
...  

Abstract. Near-field far-field transformations (NFFFTs) are commonly performed for time-harmonic fields. Considering arbitrary in-situ measurement scenarios with given transmission signals, time-varying aspects of modulated signals have to be taken into consideration. We investigate and characterize two methods for the measurement of modulated fields, which work with a time-domain representation of the radiated fields and, at the same time, allow to employ the standard time-harmonic NFFFT. One method is based on the fact that the modulation signal can be assumed to be constant in a short enough measurement interval under the condition that the modulation and carrier frequencies are several decades apart. The second method performs long-time measurements in order to obtain the complete frequency spectrum in every single measurement. Both methods are verified by the NFFFT of synthetic field data.


2019 ◽  
Vol 627 ◽  
pp. A46 ◽  
Author(s):  
Souvik Bose ◽  
Vasco M. J. Henriques ◽  
Luc Rouppe van der Voort ◽  
Tiago M. D. Pereira

Context. The solar chromosphere and the lower transition region are believed to play a crucial role in the heating of the solar corona. Models that describe the chromosphere (and the lower transition region), accounting for its highly dynamic and structured character are, so far, found to be lacking. This is partly due to the breakdown of complete frequency redistribution (CRD) in the chromospheric layers and also because of the difficulty in obtaining complete sets of observations that adequately constrain the solar atmosphere at all relevant heights. Aims. We aim to obtain semi-empirical model atmospheres that reproduce the features of the Mg II h&k line profiles that sample the middle chromosphere with focus on a sunspot. Methods. We used spectropolarimetric observations of the Ca II 8542 Å spectra obtained with the Swedish 1 m Solar Telescope and used NICOLE inversions to obtain semi-empirical model atmospheres for different features in and around a sunspot. These were used to synthesize Mg II h&k spectra using the RH1.5D code, which we compared with observations taken with the Interface Region Imaging Spectrograph (IRIS). Results. Comparison of the synthetic profiles with IRIS observations reveals that there are several areas, especially in the penumbra of the sunspot, where most of the observed Mg II h&k profiles are very well reproduced. In addition, we find that supersonic hot down-flows, present in our collection of models in the umbra, lead to synthetic profiles that agree well with the IRIS Mg II h&k profiles, with the exception of the line core. Conclusions. We put forward and make available four semi-empirical model atmospheres. Two for the penumbra, reflecting the range of temperatures obtained for the chromosphere, one for umbral flashes, and a model representative of the quiet surroundings of a sunspot.


Author(s):  
Eric Sackey ◽  
Rajeev Paulus

<p><span>When an area is highly populated with Machine-to-Machine devices and all these devices attempt to access the Random Access Network Simultaneously, congestion is created on the network which degrades the performance of the network to other users. In this paper, the researchers are seeking to improve network accessibility by deploying more Femtocell into the network. They engaged the use of Extended Access Barring to restrict the M2M devices from accessing the network via macrocell eNB when a minimum load threshold is attained, thereby preventing the macrocell eNB from being congested. Deploying these Femtocells underneath the macrocell eNB comes with the issue of Inter-Cell Interference which nullifies any gains made by this deployment. The researchers employed Fractional Frequency Reuse and Complete Frequency Reuse schemes to mitigate the negative effects of ICI to augment the throughput of the network, improve the system capacity and enhanced the user experience within the network.</span></p>


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 887 ◽  
Author(s):  
Jakob Blomgren ◽  
Fredrik Ahrentorp ◽  
Dag Ilver ◽  
Christian Jonasson ◽  
Sobhan Sepehri ◽  
...  

We developed a novel biodetection method for influenza virus based on AC magnetic susceptibility measurement techniques (the DynoMag induction technique) together with functionalized multi-core magnetic nanoparticles. The sample consisting of an incubated mixture of magnetic nanoparticles and rolling circle amplified DNA coils is injected into a tube by a peristaltic pump. The sample is moved as a plug to the two well-balanced detection coils and the dynamic magnetic moment in each position is read over a range of excitation frequencies. The time for making a complete frequency sweep over the relaxation peak is about 5 minutes (10 Hz–10 kHz with 20 data points). The obtained standard deviation of the magnetic signal at the relaxation frequency (around 100 Hz) is equal to about 10−5 (volume susceptibility SI units), which is in the same range obtained with the DynoMag system. The limit of detection with this method is found to be in the range of 1 pM.


2018 ◽  
Vol 16 (04) ◽  
pp. 525-563 ◽  
Author(s):  
Seung-Yeal Ha ◽  
Hwa Kil Kim ◽  
Jinyeong Park

The synchronous dynamics of many limit-cycle oscillators can be described by phase models. The Kuramoto model serves as a prototype model for phase synchronization and has been extensively studied in the last 40 years. In this paper, we deal with the complete synchronization problem of the Kuramoto model with frustrations on a complete graph. We study the robustness of complete synchronization with respect to the network structure and the interaction frustrations, and provide sufficient frameworks leading to the complete synchronization, in which all frequency differences of oscillators tend to zero asymptotically. For a uniform frustration and unit capacity, we extend the applicable range of initial configurations for the complete synchronization to be distributed on larger arcs than a half circle by analyzing the detailed dynamics of the order parameters. This improves the earlier results [S.-Y. Ha, H. Kim and J. Park, Remarks on the complete frequency synchronization of Kuramoto oscillators, Nonlinearity 28 (2015) 1441–1462; Z. Li and S.-Y. Ha, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci. 26 (2016) 357–382.] which can be applicable only for initial configurations confined in a half circle.


2018 ◽  
Vol 148 ◽  
pp. 06004 ◽  
Author(s):  
Łukasz Kłoda ◽  
Stefano Lenci ◽  
Jerzy Warmiński

Forced nonlinear oscillations of a planar, initially straight, Timoshenko beam are studied. The goal of this paper is to examine large amplitude vibrations of a hinged-simply supported beam with a linear axial spring on one end, allowing to consider the influence of varying axial boundary conditions. Influence of geometrical nonlinearity coming from very large deformations in axial, transversal and rotational directions on frequency response curves are presented for a wide spectrum of the spring stiffness. The complete frequency response curve is computed by a special pseudo continuation method of explicit numerical simulations. For selected cases, a jump phenomenon between branches and super/sub harmonic resonances have been observed.


Sign in / Sign up

Export Citation Format

Share Document