scholarly journals Effects of assortative mixing in the second-order Kuramoto model

2015 ◽  
Vol 91 (5) ◽  
Author(s):  
Thomas K. DM. Peron ◽  
Peng Ji ◽  
Francisco A. Rodrigues ◽  
Jürgen Kurths
Keyword(s):  
2021 ◽  
Vol 31 (11) ◽  
pp. 113113
Author(s):  
Nikita V. Barabash ◽  
Vladimir N. Belykh ◽  
Grigory V. Osipov ◽  
Igor V. Belykh

2014 ◽  
Vol 960-961 ◽  
pp. 1054-1057
Author(s):  
Liu Yang ◽  
Yu Feng Guo ◽  
Ning Chen ◽  
Min Hui Qian ◽  
Xiao Ping Xue ◽  
...  

Based on frequency synchronization theory of the second-order non-uniform Kuramoto model, a novel approach for power system transient stability analysis is put forward by establishing the correspondence between the classic power system model and the second-order non-uniform Kuramoto model. This method relates network parameters with the region of attraction of the disturbed system’s stable equilibrium and thus the transient stability information of the disturbed system can be obtained by comparing the initial configuration with trapping region of the stable equilibrium of the disturbance-canceling system. The application of our approach to single machine infinite bus system shows that this method features a fast computation speed. It can determine the transient stability of the system when a certain perturbation acts on as well as offer the stability margin of the disturbed system, which is of great importance for practical use.


2019 ◽  
Vol 29 (4) ◽  
pp. 043102 ◽  
Author(s):  
Xue Li ◽  
Jiameng Zhang ◽  
Yong Zou ◽  
Shuguang Guan
Keyword(s):  

Author(s):  
W. L. Bell

Disappearance voltages for second order reflections can be determined experimentally in a variety of ways. The more subjective methods, such as Kikuchi line disappearance and bend contour imaging, involve comparing a series of diffraction patterns or micrographs taken at intervals throughout the disappearance range and selecting that voltage which gives the strongest disappearance effect. The estimated accuracies of these methods are both to within 10 kV, or about 2-4%, of the true disappearance voltage, which is quite sufficient for using these voltages in further calculations. However, it is the necessity of determining this information by comparisons of exposed plates rather than while operating the microscope that detracts from the immediate usefulness of these methods if there is reason to perform experiments at an unknown disappearance voltage.The convergent beam technique for determining the disappearance voltage has been found to be a highly objective method when it is applicable, i.e. when reasonable crystal perfection exists and an area of uniform thickness can be found. The criterion for determining this voltage is that the central maximum disappear from the rocking curve for the second order spot.


Sign in / Sign up

Export Citation Format

Share Document