Axisymmetric planar cracks in finite hollow cylinders of transversely isotropic material: Part II—cutting method for finite cylinders

Author(s):  
M. Pourseifi ◽  
R. T. Faal ◽  
E. Asadi
1965 ◽  
Vol 87 (2) ◽  
pp. 391-397 ◽  
Author(s):  
Tu-Lung Weng

The equations of thermal stresses and displacements in anisotropic hollow cylinders subjected to various selected temperature boundary conditions have been derived. The hollow cylinder is assumed to be made of transversely isotropic material. Several numerical examples are treated and the effects of the degree of anisotropy on the magnitudes of the critical stress and maximum permissible gas temperature for various sizes of grades ATJ and ZTA graphite hollow cylinders are examined. The errors which could result from the assumption of isotropic material are calculated.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1443-1448
Author(s):  
YUE-XIU WU ◽  
QUAN-SHENG LIU

To understand the dynamic response of transversely isotropic material under explosion load, the analysis is done with the help of ABAQUS software and the constitutive equations of transversely isotropic material with different angle of isotropic section. The result is given: when the angle of isotropic section is settled, the velocity and acceleration of measure points decrease with the increasing distance from the explosion borehole. The velocity and acceleration in the loading direction are larger than those in the normal direction of the loading direction and their attenuation are much faster. When the angle of isotropic section is variable, the evolution curves of peak velocity and peak acceleration in the loading direction with the increasing angles are notching parabolic curves. They get their minimum values when the angle is equal to 45 degree. But the evolution curves of peak velocity and peak acceleration in the normal direction of the loading direction with the increasing angles are overhead parabolic curves. They get their maximum values when the angle is equal to 45 degree.


2009 ◽  
Vol 13 (4) ◽  
pp. 107-118 ◽  
Author(s):  
Thakur Pankaj

Elastic-plastic transitional stresses in a transversely isotropic thick-walled cylinder subjected to internal pressure and steady-state temperature have been derived by using Seth's transition theory. The combined effects of pressure and temperature has been presented graphically and discussed. It has been observed that at room temperature, thick-walled cylinder made of isotropic material yields at a high pressure at the internal surface as compared to cylinder made of transversely isotropic material. With the introduction of thermal effects isotropic/transversely isotropic cylinder yields at a lower pressure whereas cylinder made of isotropic material requires less percentage increase in pressure to become fully-plastic from its initial yielding as compared to cylinder made of transversely isotropic material.


2005 ◽  
Vol 127 (2) ◽  
pp. 197-203 ◽  
Author(s):  
Ming Cheng ◽  
Weinong Chen ◽  
Tusit Weerasooriya

Kevlar® KM2 fiber is a transversely isotropic material. Its tensile stress-strain response in the axial direction is linear and elastic until failure. However, the overall deformation in the transverse directions is nonlinear and nonelastic, although it can be treated linearly and elastically in infinitesimal strain range. For a linear, elastic, and transversely isotropic material, five material constants are needed to describe its stress-strain response. In this paper, stress-strain behavior obtained from experiments on a single Kevlar KM2 fiber are presented and discussed. The effects of loading rate and the influence of axial loading on transverse and transverse loading on axial stress-strain responses are also discussed.


Sign in / Sign up

Export Citation Format

Share Document