Parameter Estimation Based on Fractional Power Spectrum Density in Bistatic MIMO Radar System Under Impulsive Noise Environment

2015 ◽  
Vol 35 (9) ◽  
pp. 3266-3283 ◽  
Author(s):  
Li Li ◽  
Tianshuang Qiu ◽  
Xiaofei Shi
2014 ◽  
Vol 989-994 ◽  
pp. 3710-3713
Author(s):  
Li Li

This paper takes the-stable distribution as the noise model and works on the parameter estimation problem of bistatic Multiple-Input Multiple-Output (MIMO) radar system in the impulsive noise environment.This paper presents a signal model and a novel method for parameter estimation in bistatic MIMO radar system in the impulsive noise environment. Firstly, a signal array model is constructed based on the-stable distribution model. Secondly, Doppler parameters are jointly estimated by searching the optimal rotation angle to meet concentrated-energy of the FLOS-FC. Furthermore, two algorithms are presented for the estimation of DODs and DOAs, including based on FLOS-MUSIC algorithm and FLOS-ESPRIT algorithm. Simulation results are presented to verity the effectiveness of the proposed method.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 232 ◽  
Author(s):  
Li Li ◽  
Nicolas H. Younan ◽  
Xiaofei Shi

Since second-order statistics-based methods rely heavily on Gaussianity assumption and fractional lower-order statistics-based methods depend on a priori knowledge of non-Gaussian noise, there remains a void in wideband bistatic multiple-input/multiple-output (MIMO) radar systems under impulsive noise. In this paper, a novel method based on Sigmoid transform was used to estimate target parameters, which do not need a priori knowledge of the noise in an impulsive noise environment. Firstly, a novel wideband ambiguity function, termed Sigmoid wideband ambiguity function (Sigmoid-WBAF), is proposed to estimate the Doppler stretch and time delay by searching the peak of the Sigmoid-WBAF. A novel Sigmoid correlation function is proposed. Furthermore, a new MUSIC algorithm based on the Sigmoid correlation function (Sigmoid-MUSIC) is proposed to estimate the direction-of-departure (DOD) and direction-of-arrival (DOA). Then, the boundness of the Sigmoid-WBAF to the symmetric alpha stable () noise, the feasibility analysis of the Sigmoid-WBAF, and complexity analysis of the Sigmoid-WBAF and Sigmoid-MUSIC are presented to evaluate the performance of the proposed method. In addition, the Cramér–Rao bound for parameter estimation was derived and computed in closed form, which shows that better performance was achieved. Simulation results and theoretical analyses are presented to verify the effectiveness of the proposed method.


2018 ◽  
Vol 35 (3-4) ◽  
pp. 277-288
Author(s):  
Xiaxia ZENG ◽  
Zhenhua SONG ◽  
Wenzhong LIN ◽  
Haibo LUO

2013 ◽  
Vol 423-426 ◽  
pp. 1589-1593
Author(s):  
Jia Ning Zhu ◽  
Ya Zhou Xu ◽  
Guo Liang Bai ◽  
Rui Wen Li

The response of a large-size cooling tower with 250m high subjected to the seismic action are investigated by both random vibration theory and response spectrum method. Shell element is taken to model the tower body, and beam element is used for the circular foundation and supporting columns. The earthquake motion input is a colored filtered white noise model and mode superposition method is adopted to analyze the random response of the large-size cooling tower. The paper presents the power spectrum density functions (PDF) and standard deviation of the displacement of the top and characteristic node, and the analysis results indicate that the results of the stationary random vibration theory and the response spectrum method are the same order of magnitude. The power spectrum density function of the bottom node stress is obviously bigger than the one at the top and the throat, and the random response of meridonal stress is dominated at the top. In addition, the peak frequency position of the power spectrum density function is different from the corresponding stress.


2013 ◽  
Vol 423-426 ◽  
pp. 1238-1242
Author(s):  
Hao Wang ◽  
Xiao Mei Shi

The input of road roughness, which affects the ride comfort and the handling stability of vehicle, is the main excitation for the running vehicle. The time history of the road roughness was researched with the random phases, based on the stationary power spectrum density of the road roughness determined by the standards. Through the inverse Fourier transform, the random phases can be used to get the road roughness in time domain, together with the amplitude. Then, the time domain simulation of the non-stationary random excitation when the vehicle ran at the changing speed, would also be studied based on the random phases. It is proved that the random road excitation for the vehicle with the changing speed is stationary modulated evolution random excitation, and its power spectrum density is the stationary modulated evolutionary power spectrum density. And the numerical results for the time history of the non-stationary random inputs were also provided. The time history of the non-stationary random road can be used to evaluate the ride comfort of the vehicle which is running at the changing speed.


Sign in / Sign up

Export Citation Format

Share Document