scholarly journals Continuous LTI Input–Output Stable Systems on $${L^{p}(\mathbb {R})}$$ and $${\mathscr {D'}_{L^{p}}(\mathbb {R})}$$ Associated with Differential Equations: Existence, Invertibility Conditions and Inversion

Author(s):  
M. Ciampa

AbstractA usual problem in analog signal processing is to ascertain the existence of a continuous single-input single-output linear time-invariant input–output stable system associated with a linear differential equation, i.e., of a continuous system such that, for every input signal in a given space of signals, yields an output, in the same space, which verifies the equation with known term the input, and to ascertain the existence of its inverse system. In this paper, we consider, as space of signals, the usual Banach space of $${L^{p}}$$ L p functions, or the space of distributions spanned by $${L^{p}}$$ L p functions and by their distributional derivatives, of any order (input spaces which include signals with not necessarily left-bounded support), we give a systematic theoretical analysis of the existence, uniqueness and invertibility of continuous linear time-invariant input–output stable systems (both causal and non-causal ones) associated with the differential equation and, in case of invertibility, we characterize the continuous inverse system. We also give necessary and sufficient conditions for causality. As an application, we consider the problem of finding a suitable almost inverse of a causal continuous linear time-invariant input–output stable non-invertible system, defined on the space of finite-energy functions, associated with a simple differential equation.

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 853
Author(s):  
Vasilii Zaitsev ◽  
Inna Kim

We consider a control system defined by a linear time-varying differential equation of n-th order with uncertain bounded coefficients. The problem of exponential stabilization of the system with an arbitrary given decay rate by linear static state or output feedback with constant gain coefficients is studied. We prove that every system is exponentially stabilizable with any pregiven decay rate by linear time-invariant static state feedback. The proof is based on the Levin’s theorem on sufficient conditions for absolute non-oscillatory stability of solutions to a linear differential equation. We obtain sufficient conditions of exponential stabilization with any pregiven decay rate for a linear differential equation with uncertain bounded coefficients by linear time-invariant static output feedback. Illustrative examples are considered.


2016 ◽  
Vol 61 (7) ◽  
pp. 1906-1911 ◽  
Author(s):  
Koffi M. D. Motchon ◽  
Komi M. Pekpe ◽  
Jean-Philippe Cassar ◽  
Stephan De Bievre

Author(s):  
Tooran Emami ◽  
John M. Watkins

A graphical technique for finding all proportional integral derivative (PID) controllers that stabilize a given single-input-single-output (SISO) linear time-invariant (LTI) system of any order system with time delay has been solved. In this paper a method is introduced that finds all PID controllers that also satisfy an H∞ complementary sensitivity constraint. This problem can be solved by finding all PID controllers that simultaneously stabilize the closed-loop characteristic polynomial and satisfy constraints defined by a set of related complex polynomials. A key advantage of this procedure is the fact that it does not require the plant transfer function, only its frequency response.


1996 ◽  
Vol 118 (2) ◽  
pp. 350-353 ◽  
Author(s):  
M. A. Hopkins ◽  
H. F. VanLandingham

This paper extends to multi-input multi-output (MIMO) systems a nonlinear method of simultaneous parameter and state estimation that appeared in the ASME JDSM&C (September, 1994), for single-input single-output (SISO) systems. The method is called pseudo-linear identification (PLID), and applies to stochastic linear time-invariant discrete-time systems. No assumptions are required about pole or zero locations; nor about relative degree, except that the system transfer functions must be strictly proper. In the earlier paper, proofs of optimality and convergence were given. Extensions of those proofs to the MIMO case are also given here.


2018 ◽  
Vol 41 (8) ◽  
pp. 2328-2337 ◽  
Author(s):  
Hassan Adloo ◽  
Mohammad Hossein Shafiei

This paper presents a new general framework for adaptive event-triggered control strategy to extend average inter-event interval, while maintaining the performance of the system. The proposed event-triggering mechanism is acquired from input to state stability conditions, which is defined in terms of system states as well as an adaptation parameter. Under the Lipschitz assumption, a positive lower bound on sampling durations is also established that is essential to restrain the Zeno behavior. Applying the proposed method to linear time-invariant systems, leads to sufficient conditions to guarantee asymptotic stability in the form of matrix inequalities. Moreover, it is shown that there exist more degrees of freedom to improve the performance criterion from theoretical aspects. Finally, in order to show capability of the proposed method and its better performance compared with some recent works, numerical simulations are presented.


Open Physics ◽  
2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Mojtaba Soorki ◽  
Mohammad Tavazoei

AbstractThis paper deals with fractional-order linear time invariant swarm systems. Necessary and sufficient conditions for asymptotic swarm stability of these systems are presented. Also, based on a time response analysis the speed of convergence in an asymptotically swarm stable fractional-order linear time invariant swarm system is investigated and compared with that of its integer-order counterpart. Numerical simulation results are presented to show the effectiveness of the paper results.


2018 ◽  
Vol 36 (4) ◽  
pp. 1375-1393 ◽  
Author(s):  
Thomas Berger ◽  
Timo Reis

Abstract We consider linear time-invariant differential-algebraic systems which are not necessarily regular. The following question is addressed: when does an (asymptotic) observer which is realized by an ordinary differential equation (ODE) system exist? In our main result we characterize the existence of such observers by means of a simple criterion on the system matrices. To be specific, we show that an ODE observer exists if, and only if, the completely controllable part of the system is impulse observable. Extending the observer design from earlier works we provide a procedure for the construction of (asymptotic) ODE observers.


Sign in / Sign up

Export Citation Format

Share Document