scholarly journals A long neck principle for Riemannian spin manifolds with positive scalar curvature

2020 ◽  
Vol 30 (5) ◽  
pp. 1183-1223
Author(s):  
Simone Cecchini

AbstractWe develop index theory on compact Riemannian spin manifolds with boundary in the case when the topological information is encoded by bundles which are supported away from the boundary. As a first application, we establish a “long neck principle” for a compact Riemannian spin n-manifold with boundary X, stating that if $${{\,\mathrm{scal}\,}}(X)\ge n(n-1)$$ scal ( X ) ≥ n ( n - 1 ) and there is a nonzero degree map into the sphere $$f:X\rightarrow S^n$$ f : X → S n which is strictly area decreasing, then the distance between the support of $$\text {d}f$$ d f and the boundary of X is at most $$\pi /n$$ π / n . This answers, in the spin setting and for strictly area decreasing maps, a question recently asked by Gromov. As a second application, we consider a Riemannian manifold X obtained by removing k pairwise disjoint embedded n-balls from a closed spin n-manifold Y. We show that if $${{\,\mathrm{scal}\,}}(X)>\sigma >0$$ scal ( X ) > σ > 0 and Y satisfies a certain condition expressed in terms of higher index theory, then the radius of a geodesic collar neighborhood of $$\partial X$$ ∂ X is at most $$\pi \sqrt{(n-1)/(n\sigma )}$$ π ( n - 1 ) / ( n σ ) . Finally, we consider the case of a Riemannian n-manifold V diffeomorphic to $$N\times [-1,1]$$ N × [ - 1 , 1 ] , with N a closed spin manifold with nonvanishing Rosenebrg index. In this case, we show that if $${{\,\mathrm{scal}\,}}(V)\ge \sigma >0$$ scal ( V ) ≥ σ > 0 , then the distance between the boundary components of V is at most $$2\pi \sqrt{(n-1)/(n\sigma )}$$ 2 π ( n - 1 ) / ( n σ ) . This last constant is sharp by an argument due to Gromov.

Author(s):  
Christian Bär ◽  
Sebastian Hannes

On a compact globally hyperbolic Lorentzian spin manifold with smooth space-like Cauchy boundary, the (hyperbolic) Dirac operator is known to be Fredholm when Atiyah–Patodi–Singer boundary conditions are imposed. This chapter explores to what extent these boundary conditions can be replaced by more general ones and how the index then changes. There are some differences to the classical case of the elliptic Dirac operator on a Riemannian manifold with boundary.


2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Rossella Bartolo ◽  
Anna Germinario ◽  
Miguel Sánchez

AbstractA new result about the existence of a closed geodesic on a Riemannian manifold with boundary is given. A detailed comparison with previous results is carried out.


2011 ◽  
Vol 13 ◽  
pp. 71-79
Author(s):  
Gonzalo García ◽  
Jhovanny Muñoz

Let (Mn, g) be an n—dimensional compact Riemannian manifold with boundary with n > 2. In this paper we study the uniqueness of metrics in the conformai class of the metric g having the same scalar curvature in M, dM, and the same mean curvature on the boundary of M, dM. We prove the equivalence of some uniqueness results replacing the hypothesis on the first Neumann eigenvalue of a linear elliptic problem associated to the problem of conformai deformations of metrics for one about the first Dirichlet eigenvalue of that problem. Keywords: Conformal metrics, scalar curvature, mean curvature.


Author(s):  
Rudolf Zeidler ◽  
◽  
◽  

In this note, we review some recent developments related to metric aspects of scalar curvature from the point of view of index theory for Dirac operators. In particular, we revisit index-theoretic approaches to a conjecture of Gromov on the width of Riemannian bands M×[−1,1], and on a conjecture of Rosenberg and Stolz on the non-existence of complete positive scalar curvature metrics on M×R. We show that there is a more general geometric statement underlying both of them implying a quantitative negative upper bound on the infimum of the scalar curvature of a complete metric on M×R if the scalar curvature is positive in some neighborhood. We study (A hat-)iso-enlargeable spin manifolds and related notions of width for Riemannian manifolds from an index-theoretic point of view. Finally, we list some open problems arising in the interplay between index theory, largeness properties and width.


2006 ◽  
Vol 17 (03) ◽  
pp. 313-330 ◽  
Author(s):  
YUNYAN YANG

Let (M,g) be a 2-dimensional compact Riemannian manifold with boundary. In this paper, we use the method of blowing up analysis to prove the existence of the extremal functions for some Moser–Trudinger inequalities on (M,g).


2018 ◽  
Vol 167 (3) ◽  
pp. 437-487 ◽  
Author(s):  
SARA AZZALI ◽  
CHARLOTTE WAHL

AbstractWe construct η- and ρ-invariants for Dirac operators, on the universal covering of a closed manifold, that are invariant under the projective action associated to a 2-cocycle of the fundamental group. We prove an Atiyah–Patodi–Singer index theorem in this setting, as well as its higher generalisation. Applications concern the classification of positive scalar curvature metrics on closed spin manifolds. We also investigate the properties of these twisted invariants for the signature operator and the relation to the higher invariants.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1379
Author(s):  
Vladimir Rovenski ◽  
Josef Mikeš ◽  
Sergey Stepanov

A Riemannian almost paracomplex manifold is a 2n-dimensional Riemannian manifold (M,g), whose structural group O(2n,R) is reduced to the form O(n,R)×O(n,R). We define the scalar curvature π of this manifold and consider relationships between π and the scalar curvature s of the metric g and its conformal transformations.


2017 ◽  
Vol 59 (3) ◽  
pp. 743-751
Author(s):  
SHOUWEN FANG ◽  
FEI YANG ◽  
PENG ZHU

AbstractLet (M, g(t)) be a compact Riemannian manifold and the metric g(t) evolve by the Ricci flow. In the paper, we prove that the eigenvalues of geometric operator −Δφ + $\frac{R}{2}$ are non-decreasing under the Ricci flow for manifold M with some curvature conditions, where Δφ is the Witten Laplacian operator, φ ∈ C2(M), and R is the scalar curvature with respect to the metric g(t). We also derive the evolution of eigenvalues under the normalized Ricci flow. As a consequence, we show that compact steady Ricci breather with these curvature conditions must be trivial.


Sign in / Sign up

Export Citation Format

Share Document