EXTREMAL FUNCTIONS FOR MOSER–TRUDINGER INEQUALITIES ON 2-DIMENSIONAL COMPACT RIEMANNIAN MANIFOLDS WITH BOUNDARY

2006 ◽  
Vol 17 (03) ◽  
pp. 313-330 ◽  
Author(s):  
YUNYAN YANG

Let (M,g) be a 2-dimensional compact Riemannian manifold with boundary. In this paper, we use the method of blowing up analysis to prove the existence of the extremal functions for some Moser–Trudinger inequalities on (M,g).

2010 ◽  
Vol 53 (4) ◽  
pp. 674-683 ◽  
Author(s):  
Alexandru Kristály ◽  
Nikolaos S. Papageorgiou ◽  
Csaba Varga

AbstractWe study a semilinear elliptic problem on a compact Riemannian manifold with boundary, subject to an inhomogeneous Neumann boundary condition. Under various hypotheses on the nonlinear terms, depending on their behaviour in the origin and infinity, we prove multiplicity of solutions by using variational arguments.


2016 ◽  
Vol 18 (06) ◽  
pp. 1550072 ◽  
Author(s):  
El Hadji Abdoulaye Thiam

Let [Formula: see text] be a smooth compact Riemannian manifold of dimension [Formula: see text] and let [Formula: see text] to be a closed submanifold of dimension [Formula: see text]. In this paper, we study existence and non-existence of minimizers of Hardy inequality with weight function singular on [Formula: see text] within the framework of Brezis–Marcus–Shafrir [Extremal functions for Hardy’s inequality with weight, J. Funct. Anal. 171 (2000) 177–191]. In particular, we provide necessary and sufficient conditions for existence of minimizers.


2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Rossella Bartolo ◽  
Anna Germinario ◽  
Miguel Sánchez

AbstractA new result about the existence of a closed geodesic on a Riemannian manifold with boundary is given. A detailed comparison with previous results is carried out.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Najoua Gamara ◽  
Abdelhalim Hasnaoui ◽  
Akrem Makni

AbstractIn this article we prove a reverse Hölder inequality for the fundamental eigenfunction of the Dirichlet problem on domains of a compact Riemannian manifold with lower Ricci curvature bounds. We also prove an isoperimetric inequality for the torsional ridigity of such domains


2003 ◽  
Vol 46 (1) ◽  
pp. 117-146 ◽  
Author(s):  
Christophe Brouttelande

AbstractThe best-constant problem for Nash and Sobolev inequalities on Riemannian manifolds has been intensively studied in the last few decades, especially in the compact case. We treat this problem here for a more general family of Gagliardo–Nirenberg inequalities including the Nash inequality and the limiting case of a particular logarithmic Sobolev inequality. From the latter, we deduce a sharp heat-kernel upper bound.AMS 2000 Mathematics subject classification: Primary 58J05


2020 ◽  
pp. 1-35
Author(s):  
Jinpeng Lu

I prove that the spectrum of the Laplace–Beltrami operator with the Neumann boundary condition on a compact Riemannian manifold with boundary admits a fast approximation by the spectra of suitable graph Laplacians on proximity graphs on the manifold, and similar graph approximation works for metric-measure spaces glued out of compact Riemannian manifolds of the same dimension.


2020 ◽  
Vol 30 (5) ◽  
pp. 1183-1223
Author(s):  
Simone Cecchini

AbstractWe develop index theory on compact Riemannian spin manifolds with boundary in the case when the topological information is encoded by bundles which are supported away from the boundary. As a first application, we establish a “long neck principle” for a compact Riemannian spin n-manifold with boundary X, stating that if $${{\,\mathrm{scal}\,}}(X)\ge n(n-1)$$ scal ( X ) ≥ n ( n - 1 ) and there is a nonzero degree map into the sphere $$f:X\rightarrow S^n$$ f : X → S n which is strictly area decreasing, then the distance between the support of $$\text {d}f$$ d f and the boundary of X is at most $$\pi /n$$ π / n . This answers, in the spin setting and for strictly area decreasing maps, a question recently asked by Gromov. As a second application, we consider a Riemannian manifold X obtained by removing k pairwise disjoint embedded n-balls from a closed spin n-manifold Y. We show that if $${{\,\mathrm{scal}\,}}(X)>\sigma >0$$ scal ( X ) > σ > 0 and Y satisfies a certain condition expressed in terms of higher index theory, then the radius of a geodesic collar neighborhood of $$\partial X$$ ∂ X is at most $$\pi \sqrt{(n-1)/(n\sigma )}$$ π ( n - 1 ) / ( n σ ) . Finally, we consider the case of a Riemannian n-manifold V diffeomorphic to $$N\times [-1,1]$$ N × [ - 1 , 1 ] , with N a closed spin manifold with nonvanishing Rosenebrg index. In this case, we show that if $${{\,\mathrm{scal}\,}}(V)\ge \sigma >0$$ scal ( V ) ≥ σ > 0 , then the distance between the boundary components of V is at most $$2\pi \sqrt{(n-1)/(n\sigma )}$$ 2 π ( n - 1 ) / ( n σ ) . This last constant is sharp by an argument due to Gromov.


2019 ◽  
Vol 17 (1) ◽  
pp. 1249-1259
Author(s):  
Rong Mi

Abstract Let ψ:(M, g) → (N, h) be a map between Riemannian manifolds (M, g) and (N, h). We introduce the notion of the F-bienergy functional $$\begin{array}{} \displaystyle E_{F,2}(\psi)=\int\limits_{M}F\left(\frac{|\tau(\psi)|^{2}}{2}\right)\text{d}V_{g}, \end{array}$$ where F : [0, ∞) → [0, ∞) be C3 function such that F′ > 0 on (0, ∞), τ(ψ) is the tension field of ψ. Critical points of τF,2 are called F-biharmonic maps. In this paper, we prove a nonexistence result for F-biharmonic maps from a complete non-compact Riemannian manifold of dimension m = dimM ≥ 3 with infinite volume that admit an Euclidean type Sobolev inequality into general Riemannian manifold whose sectional curvature is bounded from above. Under these geometric assumptions we show that if the Lp-norm (p > 1) of the tension field is bounded and the m-energy of the maps is sufficiently small, then every F-biharmonic map must be harmonic. We also get a Liouville-type result under proper integral conditions which generalize the result of [Branding V., Luo Y., A nonexistence theorem for proper biharmonic maps into general Riemannian manifolds, 2018, arXiv: 1806.11441v2].


Sign in / Sign up

Export Citation Format

Share Document