Aphid egg protection by ants: a novel aspect of the mutualism between the tree-feeding aphid Stomaphis hirukawai and its attendant ant Lasius productus

2006 ◽  
Vol 93 (10) ◽  
pp. 506-510 ◽  
Author(s):  
Kenji Matsuura ◽  
Toshihisa Yashiro
Keyword(s):  
2014 ◽  
Vol 27 (5) ◽  
pp. 920-928 ◽  
Author(s):  
J. B. Deas ◽  
M. S. Hunter

2015 ◽  
Vol 186 (4) ◽  
pp. E91-E97 ◽  
Author(s):  
Fernando Mayani-Parás ◽  
Rebecca M. Kilner ◽  
Mary Caswell Stoddard ◽  
Cristina Rodríguez ◽  
Hugh Drummond
Keyword(s):  

Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 693
Author(s):  
Hong Yu ◽  
Min-Rui Shi ◽  
Jin Xu ◽  
Peng Chen ◽  
Jian-Hong Liu

Investigation of mating-induced trade-offs between reproduction and survival is conducive to provide evolutionary insights into reproductive strategies and aging. Here, we used RNAseq and bioinformatics to reveal mating-induced changes of genes and pathways related to reproduction and survival in female Cephalcia chuxiongica, a pine defoliator with facultative parthenogenesis and long larval dormancy. Results showed that mating induced substantial downregulation on genes and pathways associated to immunity, stress response, and longevity. However, mating induced divergent reproductive response, with downregulation on genes and pathways related to egg production while upregulation on genes and pathways related to egg fertilization. Considering the nature of limited resources in adults, low fecundity, and egg protection behavior in C. chuxiongica, we suggest that mating triggers trade-offs between reproduction and survival in this insect and females of this species may have evolved specific strategies to adapt to the environmental and hosts’ conditions, e.g., restrict whole fecundity to ensure higher fertilization and offspring’s survival. Moreover, mating induced significant responses on genes and pathways that play important roles in vertebrate reproduction while their function in insects are unclear, such as the progesterone-mediated oocyte maturation pathway; the significant regulation after mating suggests that their function may be evolutionarily conserved in animal kingdom.


2020 ◽  
Vol 223 (19) ◽  
pp. jeb231878
Author(s):  
Tabata R. Brola ◽  
Marcos S. Dreon ◽  
Jian-Wen Qiu ◽  
Horacio Heras

ABSTRACTThe acquisition of egg protection is vital for species survival. Poisonous eggs from Pomacea apple snails have defensive macromolecules for protection. Here we isolated and characterized a novel lectin called PdPV1 that is massively accumulated in the eggs of Pomacea diffusa and seems part of its protective cocktail. The native protein, an oligomer of ca 256 kDa, has high structural stability, withstanding 15 min boiling and denaturing by SDS. It resists in vitro proteinase digestion and displays structural stability between pH 2.0 and pH 12.0, and up to 85°C. These properties, as well as its subunit sequences, glycosylation pattern, presence of carotenoids, size and global shape resemble those of its orthologs from other Pomacea. Furthermore, like members of the canaliculata clade, PdPV1 is recovered unchanged in feces of mice ingesting it, supporting an anti-nutritive defensive function. PdPV1 also displays a strong hemagglutinating activity, specifically recognizing selected ganglioside motifs with high affinity. This activity is only shared with PsSC, a perivitelline from the same clade (bridgesii clade). As a whole, these results indicate that species in the genus Pomacea have diversified their egg defenses: those from the bridgesii clade are protected mostly by non-digestible lectins that lower the nutritional value of eggs, in contrast with protection by neurotoxins of other Pomacea clades, indicating that apple snail egg defensive strategies are clade specific. The harsh gastrointestinal environment of predators would have favored their appearance, extending by convergent evolution the presence of plant-like highly stable lectins, a strategy not reported in other animals.


Author(s):  
n.m. monteiro ◽  
v.c. almada ◽  
m.n. vieira

the evolutionary radiation of the family syngnathidae was accompanied by a diversification of structures involved in male parental care whose anatomical variations may signal differences in reproductive strategies, with increasing egg protection possibly affecting female investment in offspring or larvae quality at the end of the embryonic development phase. an analysis of egg numbers showed significant differences between syngnathids with and without marsupium, suggesting that the brood pouch, besides increasing protection to the male and its eggs, also introduced the ability to carry an additional number of offspring per pregnancy, from one or more females. curiously, even though larvae sizes do not significantly differ between the considered brooding structures (controlling for male length), seahorse larvae were smaller than expected, given the large volume of the pear-shaped eggs. these observations suggest that the sealed seahorse pouch, although allowing the transport of a great number of offspring and capable of multiple consecutive pregnancies, may impose serious functional constraints, namely those related with oxygenation of the developing larvae, thus explaining the increased egg surface together with the presence of specific salinity control mechanisms inside the marsupium.


Sign in / Sign up

Export Citation Format

Share Document