Genome-based prediction of agronomic traits in spring wheat under conventional and organic management systems

Author(s):  
Kassa Semagn ◽  
Muhammad Iqbal ◽  
José Crossa ◽  
Diego Jarquin ◽  
Reka Howard ◽  
...  
2015 ◽  
Vol 95 (4) ◽  
pp. 615-627 ◽  
Author(s):  
Hiroshi Kubota ◽  
Sylvie A. Quideau ◽  
Pierre J. Hucl ◽  
Dean M. Spaner

Kubota, H., Quideau, S. A., Hucl, P. J. and Spaner, D. M. 2015. The effect of weeds on soil arbuscular mycorrhizal fungi and agronomic traits in spring wheat (Triticum aestivum L.) under organic management in Canada. Can. J. Plant Sci. 95: 615–627. Understanding the influence of weeds in agroecosystems may aid in developing efficient and sustainable organic wheat production systems. We examined the effect of weeds on soil microbial communities and the performance of spring wheat (Triticum aestivum L.) under organic management in Edmonton, AB, Canada. We grew 13 Canadian spring wheat cultivars in organically managed hand-weeded less-weedy and weedy treatments in 2010 and 2011. The less-weedy treatment exhibited greater grain yield and tillers per square meter, while kernel weight, test weight, days to maturity, plant height, grain P and protein content were not altered by weed treatment. Canada Western Red Spring (CWRS) wheat cultivars CDC Go and CDC Kernen were the most yield-stable because they minimized fertile tiller reduction in response to weed pressure (10 and 13% reduction, respectively, compared with the average reduction of 20%). Other cultivars exhibited yield stability through increased kernel weight. The contribution of arbuscular mycorrhizal fungi (AMF) to the total phospholipid fatty acid increased in both treatments; however, the rate of this increase was greater in the weedy treatment than the less-weedy treatment (from 2.9 to 3.9%, from 2.8 to 3.1%, respectively). Weed dry biomass was positively correlated with AMF% in the less-weedy treatment only. Organic systems tend to be weedier than conventional systems. We found that weeds are important determinants of AMF proliferation in soil. In addition, choosing wheat cultivars that maintain important yield components under severe weed stress is one strategy to maximize yields in organic systems.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 853
Author(s):  
Kassa Semagn ◽  
Muhammad Iqbal ◽  
Hua Chen ◽  
Enid Perez-Lara ◽  
Darcy H. Bemister ◽  
...  

In previous studies, we reported quantitative trait loci (QTL) associated with the heading, flowering, and maturity time in four hard red spring wheat recombinant inbred line (RIL) populations but the results are scattered in population-specific genetic maps, which is challenging to exploit efficiently in breeding. Here, we mapped and characterized QTL associated with these three earliness traits using the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v2.0 physical map. Our data consisted of (i) 6526 single nucleotide polymorphisms (SNPs) and two traits evaluated at five conventionally managed environments in the ‘Cutler’ × ‘AC Barrie’ population; (ii) 3158 SNPs and two traits evaluated across three organic and seven conventional managements in the ‘Attila’ × ‘CDC Go’ population; (iii) 5731 SilicoDArT and SNP markers and the three traits evaluated at four conventional and organic management systems in the ‘Peace’ × ‘Carberry’ population; and (iv) 1058 SNPs and two traits evaluated across two conventionally and organically managed environments in the ‘Peace’ × ‘CDC Stanley’ population. Using composite interval mapping, the phenotypic data across all environments, and the IWGSC RefSeq v2.0 physical maps, we identified a total of 44 QTL associated with days to heading (11), flowering (10), and maturity (23). Fifteen of the 44 QTL were common to both conventional and organic management systems, and the remaining QTL were specific to either the conventional (21) or organic (8) management systems. Some QTL harbor known genes, including the Vrn-A1, Vrn-B1, Rht-A1, and Rht-B1 that regulate photoperiodism, flowering time, and plant height in wheat, which lays a solid basis for cloning and further characterization.


Crop Science ◽  
2016 ◽  
Vol 57 (1) ◽  
pp. 365-377 ◽  
Author(s):  
Jun Zou ◽  
Kassa Semagn ◽  
Muhammad Iqbal ◽  
Amidou N'Diaye ◽  
Hua Chen ◽  
...  

2020 ◽  
pp. 1
Author(s):  
Khem Pant ◽  
Bishnu Ojha ◽  
Dhruba Thapa ◽  
Raju Kharel ◽  
Nutan Gautam ◽  
...  

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 149
Author(s):  
Sergey Shepelev ◽  
Alexey Morgounov ◽  
Paulina Flis ◽  
Hamit Koksel ◽  
Huihui Li ◽  
...  

Western Siberia is one of the major spring wheat regions of Russia, cultivating over 7 Mha. The objective of the study was to evaluate the variation of macro- and microelements, and of trace metals in four distinct groups of genetic resources: primary synthetics from CIMMYT (37 entries), primary synthetics from Japan (8), US hard red spring wheat cultivars (14), and material from the Kazakhstan–Siberian Network on Spring Wheat Improvement (KASIB) (74). The experiment was conducted at Omsk State Agrarian University, using a random complete block design with four replicates in 2017 and 2018. Concentrations of 15 elements were included in the analysis: macroelements, Ca, K, Mg, P, and S; microelements, Fe, Cu, Mn, and Zn; toxic trace elements, Cd, Co, Ni; and trace elements, Mo, Rb, and Sr. Protein content was found to be positively correlated with the concentrations of 11 of the elements in one or both years. Multiple regression was used to adjust the concentration of each element, based on significant correlations with agronomic traits and macroelements. All 15 elements were evaluated for their suitability for genetic enhancement, considering phenotypic variation, their share of the genetic component in this variation, as well as the dependence of the element concentration on other traits. Three trace elements (Sr, Mo, and Co) were identified as traits that were relatively easy to enhance through breeding. These were followed by Ca, Cd, Rb, and K. The important biofortification elements Mn and Zn were among the traits that were difficult to enhance genetically. The CIMMYT and Japanese synthetics had significantly higher concentrations of K and Sr, compared to the local check. The Japanese synthetics also had the highest concentrations of Ca, S, Cd, and Mo. The US cultivars had concentrations of Ca as high as the Japanese synthetics, and the highest concentrations of Mg and Fe. KASIB’s germplasm had near-average values for most elements. Superior germplasm, with high macro- and microelement concentrations and low trace-element concentrations, was found in all groups of material included.


age ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Hua Chen ◽  
Khang Nguyen ◽  
Muhammad Iqbal ◽  
Brian L. Beres ◽  
Pierre J. Hucl ◽  
...  

2011 ◽  
Vol 123 (6) ◽  
pp. 1043-1053 ◽  
Author(s):  
Y. Naruoka ◽  
L. E. Talbert ◽  
S. P. Lanning ◽  
N. K. Blake ◽  
J. M. Martin ◽  
...  

2017 ◽  
Vol 32 (6) ◽  
pp. 562-572 ◽  
Author(s):  
G.K. Healy ◽  
B.J. Emerson ◽  
J.C. Dawson

AbstractTomatoes are a profitable direct-market crop for diversified Midwestern farmers. Unfortunately, many tomatoes with the flavor and quality characteristics consumers desire (such as heirloom varieties) lack agronomic traits important to organic farmers. Hoop-house production offers potentially higher yields and quality than field-grown tomatoes, and has become a popular option for organic farmers. This study compares 19 varieties of tomatoes in both organic hoop house and field conditions, to identify high-performing varieties for future plant breeding, and to characterize the effect of hoop houses on productivity and quality traits. We found that tomatoes grown in a hoop house had significantly higher yield, lower disease severity and higher °Brix (soluble sugars) than those grown in an adjacent field; and that management (hoop house versus field) had significantly more influence over those traits than other variables (variety, market class or year). This lack of varietal differences between management systems will simplify breeding efforts aimed at introducing varieties for hoop house production.


Sign in / Sign up

Export Citation Format

Share Document