Identification of genome constitution of Oryza malampuzhaensis, O. minuta,and O. punctata by multicolor genomic in situ hybridization

2001 ◽  
Vol 103 (2-3) ◽  
pp. 204-211 ◽  
Author(s):  
C.-B. Li ◽  
D.-M. Zhang ◽  
S. Ge ◽  
B.-R. Lu ◽  
D.-Y. Hong

Genome ◽  
2001 ◽  
Vol 44 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Marian Ørgaard ◽  
Kesara Anamthawat-Jónsson

The genome constitution of Icelandic Elymus caninus, E. alaskanus, and Elytrigia repens was examined by fluorescence in situ hybridization using genomic DNA and selected cloned sequences as probes. Genomic in situ hybridization (GISH) of Hordeum brachyantherum ssp. californicum (diploid, H genome) probe confirmed the presence of an H genome in the two tetraploid Elymus species and identified its presence in the hexaploid Elytrigia repens. The H chromosomes were painted uniformly except for some chromosomes of Elytrigia repens which showed extended unlabelled pericentromeric and subterminal regions. A mixture of genomic DNA from H. marinum ssp. marinum (diploid,Xa genome) and H. murinum ssp. leporinum (tetraploid,Xu genome) did not hybridize to chromosomes of the Elymus species or Elytrigia repens, confirming that these genomes were different from the H genome. The St genomic probe from Pseudoroegneria spicata (diploid) did not discriminate between the genomes of the Elymus species, whereas it produced dispersed and spotty hybridization signals most likely on the two St genomes of Elytrigia repens. Chromosomes of the two genera Elymus and Elytrigia showed different patterns of hybridization with clones pTa71 and pAes41, while clones pTa1 and pSc119.2 hybridized only to Elytrigia chromosomes. Based on FISH with these genomic and cloned probes, the two Elymus species are genomically similar, but they are evidently different from Elytrigia repens. Therefore the genomes of Icelandic Elymus caninus and E. alaskanus remain as StH, whereas the genomes of Elytrigia repens are proposed as XXH.Key words: Elymus, Elytrigia, H genome, St genome, in situ hybridization.



Genome ◽  
2003 ◽  
Vol 46 (2) ◽  
pp. 314-322 ◽  
Author(s):  
L Malysheva ◽  
T Sjakste ◽  
F Matzk ◽  
M Röder ◽  
M Ganal

In the present investigation, genomic in situ hybridization (GISH) and barley microsatellite markers were used to analyse the genome constitution of wheat–barley hybrids from two backcross generations (BC1 and BC2). Two BC1 plants carried 3 and 6 barley chromosomes, respectively, according to GISH data. Additional chromosomal fragments were detected using microsatellites. Five BC2 plants possessed complete barley chromosomes or chromosome segments and six BC2 plants did not preserve barley genetic material. Molecular markers revealed segments of the barley genome with the size of one marker only, which probably resulted from recombination between wheat and barley chromosomes. The screening of backcrossed populations from intergeneric hybrids could be effectively conducted using both genomic in situ hybridization and molecular microsatellite markers. GISH images presented a general overview of the genome constitution of the hybrid plants, while microsatellite analysis revealed the genetic identity of the alien chromosomes and chromosomal segments introgressed. These methods were complementary and provided comprehensive information about the genomic constitution of the plants produced.Key words: wheat–barley hybrids, introgressive hybridization, recombination, molecular markers, genomic in situ hybridization (GISH).



2015 ◽  
Vol 53 (6) ◽  
pp. 529-534 ◽  
Author(s):  
Cai-Rong Yang ◽  
Hai-Qin Zhang ◽  
Fu-Qiang Zhao ◽  
Xiao-Yan Liu ◽  
Xing Fan ◽  
...  


Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1173-1181 ◽  
Author(s):  
Prem P Jauhar ◽  
M Doğramaci ◽  
T S Peterson

Wild grasses in the tribe Triticeae, some in the primary or secondary gene pool of wheat, are excellent reservoirs of genes for superior agronomic traits, including resistance to various diseases. Thus, the diploid wheatgrasses Thinopyrum bessarabicum (Savul. and Rayss) Á. Löve (2n = 2x = 14; JJ genome) and Lophopyrum elongatum (Host) Á. Löve (2n = 2x = 14; EE genome) are important sources of genes for disease resistance, e.g., Fusarium head blight resistance that may be transferred to wheat. By crossing fertile amphidiploids (2n = 4x = 28; JJEE) developed from F1 hybrids of the 2 diploid species with appropriate genetic stocks of durum wheat, we synthesized trigeneric hybrids (2n = 4x = 28; ABJE) incorporating both the J and E genomes of the grass species with the durum genomes A and B. Trigeneric hybrids with and without the homoeologous-pairing suppressor gene, Ph1, were produced. In the absence of Ph1, the chances of genetic recombination between chromosomes of the 2 useful grass genomes (JE) and those of the durum genomes (AB) would be enhanced. Meiotic chromosome pairing was studied using both conventional staining and fluorescent genomic in situ hybridization (fl-GISH). As expected, the Ph1-intergeneric hybrids showed low chromosome pairing (23.86% of the complement), whereas the trigenerics with ph1b (49.49%) and those with their chromosome 5B replaced by 5D (49.09%) showed much higher pairing. The absence of Ph1 allowed pairing and, hence, genetic recombination between homoeologous chromosomes. Fl-GISH analysis afforded an excellent tool for studying the specificity of chromosome pairing: wheat with grass, wheat with wheat, or grass with grass. In the trigeneric hybrids that lacked chromosome 5B, and hence lacked the Ph1 gene, the wheat–grass pairing was elevated, i.e., 2.6 chiasmata per cell, a welcome feature from the breeding standpoint. Using Langdon 5D(5B) disomic substitution for making trigeneric hybrids should promote homoeologous pairing between durum and grass chromosomes and hence accelerate alien gene transfer into the durum genomes.Key words: alien gene transfer, chiasma (xma) frequency, chromosome pairing, fluorescent genomic in situ hybridization (fl-GISH), homoeologous-pairing regulator, specificity of chromosome pairing, wheatgrass.



2010 ◽  
Vol 28 (2) ◽  
pp. 206-211 ◽  
Author(s):  
Hai-Qing Yu ◽  
Chun Zhang ◽  
Chun-Bang Ding ◽  
Hai-Qin Zhang ◽  
Yong-Hong Zhou


1997 ◽  
Vol 95 (8) ◽  
pp. 1320-1324 ◽  
Author(s):  
R. J. Snowdon ◽  
W. Köhler ◽  
W. Friedt ◽  
A. Köhler


2017 ◽  
pp. 253-258
Author(s):  
F. Ramzan ◽  
A. Younis ◽  
K.B. Lim ◽  
S.H. Bae ◽  
M.J. Kwon ◽  
...  


2009 ◽  
Vol 56 (6) ◽  
pp. 843-850 ◽  
Author(s):  
Yongqiang Wang ◽  
Hui Zhi ◽  
Wei Li ◽  
Haiquan Li ◽  
Yongfang Wang ◽  
...  


Genome ◽  
2001 ◽  
Vol 44 (2) ◽  
pp. 299-304 ◽  
Author(s):  
S N Haider Ali ◽  
Dirk Jan Huigen ◽  
M S Ramanna ◽  
Evert Jacobsen ◽  
Richard GF Visser

A 4x potato (+) tomato fusion hybrid (2n = 4x = 48) was successfully backcrossed with a diploid Lycopersicon pennellii (2n = 2x = 24). Genomic in situ hybridization (GISH) on somatic and meiotic chromosomes confirmed that the progenies were triploids (2n = 3x = 36) and possessed three different genomes: potato, tomato, and L. pennellii. Therefore, they have been called trigenomic hybrids. Total genomic probes of both Lycopersicon species were found to hybridize mutually, whereas the potato genome was clearly differentiated. During metaphase I, bivalents were formed predominantly between tomato and L. pennellii chromosomes and the univalents of potato chromosomes were most common. Trivalents in all cases included homoeologous chromosomes of potato, tomato, and L. pennellii. However, the triploids were totally sterile as determined from extensive crossing. On chromosome doubling of triploids by shoot regeneration from callus, hexaploids (2n = 6x = 72) were obtained. Despite exhibiting clear allohexaploid behaviour by forming 36 bivalents at meiosis, these were also completely sterile like their triploid counterparts. In spite of this drawback, the prospects of chromosome pairing between potato L. pennellii and Solanum genomes does open the possibilities for bringing the two genera close.Key words: trigenomic triploids, GISH, bridge species, potato (+) tomato fusion hybrids.



Sign in / Sign up

Export Citation Format

Share Document