ploidy level
Recently Published Documents


TOTAL DOCUMENTS

585
(FIVE YEARS 102)

H-INDEX

41
(FIVE YEARS 3)

Author(s):  
E Salkova ◽  
D Gela ◽  
P Pecherkova ◽  
M Flajshans

Functional diploid Acipenser ruthenus, functional tetraploid Acipenser gueldenstaedtii and functional hexaploid Acipenser brevirostrum juveniles were sampled monthly for one year, and the white blood cell indicators were determined. The total number of leukocytes (TL) was 40.93 ± 17.24 × 10<sup>9</sup>/l for the diploids, 20.63 ± 11.20 × 10<sup>9</sup>/l for the tetraploids, 14.13 ± 7.72 × 10<sup>9</sup>/l for the hexaploids. The TL decreased with an increasing ploidy level. The highest number of leukocytes was reached during September and October for A. ruthenus and A. brevirostrum, from October to January for A. gueldenstaedtii (a statistically significant finding). The lymphocytes dominated (76.89–80.14%) in the differential counts and were found to be reduced in June and July in each group. Granulocytes were represented by neutrophils and eosinophils. Counting from all the leukocytes, the neutrophils represented 13.0–18.7% and eosinophils represented 5.7–6.1%. Increasing number of nuclear segments in the granulocytes was dependent on the increasing ploidy level. Nuclear segmentation in the lymphocytes was a common finding in higher ploidy level groups. The data suggest a significant effect of ploidy level on the total number of leukocytes and morphological nuclear changes in the granulocytes and lymphocytes. The seasonal variation in the differential leukocyte counts depends on the species and the influence of various external conditions rather than the ploidy level.


HortScience ◽  
2022 ◽  
Vol 57 (1) ◽  
pp. 48-55
Author(s):  
Yan He ◽  
Lulu Yang ◽  
Yanjun Zhang ◽  
Qiong Liang

Bletilla is an Orchidaceae genus with high medical value, including detumescence, antibacterial, and hemostasis. In this study, detailed estimates of ploidy level, karyotype, and genome size were first obtained, and a comprehensive cytological analysis was carried out to better understand the evolution of the genus. The karyotypes of Bletilla were mainly composed of metacentric and submetacentric chromosomes with lengths ranging from 1.25 to 4.93 μm. There was moderate cytological variation in Bletilla (chromosome number 2n = 32 to 76). Diploid with 2n = 34 and 2n = 36 was detected in Bletilla ochracea and Bletilla formosana, respectively, whereas diploid (2n = 32) was dominant in Bletilla striata, dysploidy (2n = 34, 2n = 36) and polyploid (2n = 48, 51, 64, 76) variations were also observed. Three species had a relatively symmetric karyotype, and which of B. ochracea was more asymmetry. The genome size (1C-values) varied from 2.94 pg (B. striata) to 3.33 pg (B. ochracea), of which B. ochracea was significantly larger than the others (P < 0.05). A positive correlation (P < 0.01) between 1Cx vs. haploid chromosome length (HCL) and asymmetry coefficient of karyotypes (AsK%) was observed.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1950
Author(s):  
Guadalupe Palomino ◽  
Javier Martínez-Ramón ◽  
Verónica Cepeda-Cornejo ◽  
Miriam Ladd-Otero ◽  
Patricia Romero ◽  
...  

Echeveria is a polyploid genus with a wide diversity of species and morphologies. The number of species registered for Echeveria is approximately 170; many of them are native to Mexico. This genus is of special interest in cytogenetic research because it has a variety of chromosome numbers and ploidy levels. Additionally, there are no studies concerning nuclear DNA content and the extent of endopolyploidy. This work aims to investigate the cytogenetic characteristics of 23 species of Echeveria collected in 9 states of Mexico, analyzing 2n chromosome numbers, ploidy level, nuclear DNA content, and endopolyploidy levels. Chromosome numbers were obtained from root tips. DNA content was obtained from the leaf parenchyma, which was processed according to the two-step protocol with Otto solutions and propidium iodide as fluorochrome, and then analyzed by flow cytometry. From the 23 species of Echeveria analyzed, 16 species lacked previous reports of 2n chromosome numbers. The 2n chromosome numbers found and analyzed in this research for Echeveria species ranged from 24 to 270. The range of 2C nuclear DNA amounts ranged from 1.26 pg in E. catorce to 7.70 pg in E. roseiflora, while the 1C values were 616 Mbp and 753 Mbp, respectively, for the same species. However, differences in the level of endopolyploidy nuclei were found, corresponding to 4 endocycles (8C, 16C, 32C and 64C) in E. olivacea, E. catorce, E. juarezensis and E. perezcalixii. In contrast, E. longiflora presented 3 endocycles (8C, 16C and 32C) and E. roseiflora presented 2 endocycles (8C and 16C). It has been suggested that polyploidization and diploidization processes, together with the presence of endopolyploidy, allowed Echeveria species to adapt and colonize new adverse environments.


2021 ◽  
Vol 948 (1) ◽  
pp. 012043
Author(s):  
R Q A’ yun ◽  
D Dinarti ◽  
A Husni ◽  
M Kosmiatin

Abstract Polyploidy induction could increase shallot bulb-size to raise consumer preference and local shallot productivity. The research aimed to obtain an effective method of polyploidy induction on callus of onion (Allium cepa) var. Bima Brebes. The experiment was consisted of two experimental steps, which were callus induction of onion and polyploid induction of the callus. A 1×1 cm callus was treated by two drops of oryzalin with concentrations 0, 25, 50, 75, 100, and 120 μM. The ploidy level was identified based on morphological trait, stomatal analysis and DNA content using a flow cytometry. The results showed callus diameter, number of green spots, and number of shoots were decreased with increasing oryzalin concentration. The planlet leaves regenerated from oryzalin treated callus were darker than that of control. The flow cytometry analysis showed that planlets with 75 μM oryzalin was tetraploid, had longer and wider stomata than that of the control.


2021 ◽  
pp. e01957
Author(s):  
Oulimata DIATTA ◽  
Adja Madjiguene DIALLO ◽  
Diaminatou SANOGO ◽  
Lene Rostgaard NIELSEN ◽  
Anders RÆBILD ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1296
Author(s):  
Jenő Káldy ◽  
Eszter Patakiné Várkonyi ◽  
Georgina Lea Fazekas ◽  
Zoltán Nagy ◽  
Zsuzsanna J. Sándor ◽  
...  

We studied the effect of different magnitudes (7000 PSI (48.26 MPa), 8000 PSI (55.16 MPa), and 9000 PSI (62.05 MPa)) of hydrostatic pressure on the ploidy of pikeperch larvae. Pressure shock was applied 5 min after the fertilization of eggs at a water temperature of 14.8 ± 1 °C. A 7000 PSI pressure shock was applied for 10 or 20 min, while 8000 and 9000 PSI treatments lasted for 10 min. Each treatment with its respective control was completed in triplicate, where different females’ eggs served as a replicate. In the treatment groups exposed to 7000 PSI for 10 min, only diploid and triploid larvae were identified, while 2n/3n mosaic individuals were found after a 20-min exposure to a 7000 PSI pressure shock. The application of 8000 or 9000 PSI pressure shocks resulted in only triploid and mosaic individuals. Among larvae from eggs treated with 8000 PSI, three mosaic individuals with 2n/3n karyotype were identified (4.0 ± 6.9%), while a single (2.0 ± 3.5%) 1n/3n mosaic individual was found in the 9000 PSI-treated group. To our knowledge, this is the first report that demonstrates the induction of a haplo-triploid karyotype by hydrostatic pressure shock in teleost fish. The dominance of triploid individuals with a reasonable survival rate (36.8 ± 26.1%) after 8000 PSI shock supports the suitability of the hydrostatic pressure treatment of freshly fertilized eggs for triploid induction in pikeperch.


2021 ◽  
Author(s):  
Cris L. Wijnen ◽  
Frank F.M. Becker ◽  
Andries A. Okkersen ◽  
Bastiaan C. de Snoo ◽  
Martin P. Boer ◽  
...  

Plants can express different phenotypic responses following polyploidization, but ploidy-dependent phenotypic variation has so far not been assigned to specific genetic factors. To map such effects, segregating populations at different ploidy levels are required. The availability of an efficient haploid-inducer line in Arabidopsis thaliana allows for the rapid development of large populations of segregating haploid offspring. Because Arabidopsis haploids can be self-fertilised to give rise to homozygous doubled haploids, the same genotypes can be phenotyped at both the haploid and diploid ploidy level. Here, we compared the phenotypes of recombinant haploid and diploid offspring derived from a cross between two late flowering accessions to map genotype x ploidy (GxP) interactions. Ploidy-specific quantitative trait loci (QTLs) were detected at both ploidy levels. This implies that mapping power will increase when phenotypic measurements of monoploids are included in QTL analyses. A multi-trait analysis further revealed pleiotropic effects for a number of the ploidy specific QTLs as well as opposite effects at different ploidy levels for general QTLs. Taken together, we provide evidence of genetic variation between different Arabidopsis accessions being causal for dissimilarities in phenotypic responses to altered ploidy levels, revealing a GxP effect. Additionally, by investigating a population derived from late flowering accessions we revealed a major vernalisation specific QTL for variation in flowering time, countering the historical bias of research in early flowering accessions.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2518
Author(s):  
Eliška Lukjanová ◽  
Jana Řepková

Trifolium L. is an economically important genus that is characterized by variable karyotypes relating to its ploidy level and basic chromosome numbers. The advent of genomic resources combined with molecular cytogenetics provides an opportunity to develop our understanding of plant genomes in general. Here, we summarize the current state of knowledge on Trifolium genomes and chromosomes and review methodologies using molecular markers that have contributed to Trifolium research. We discuss possible future applications of cytogenetic methods in research on the Trifolium genome and chromosomes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuliang Jiang ◽  
Tsam Ju ◽  
Linda E. Neaves ◽  
Jialiang Li ◽  
Weining Tan ◽  
...  

Population genetic assessment is crucial for the conservation and management of threatened species. Xanthocyparis vietnamensis is an endangered species that is currently restricted to karst mountains in southwestern China and Vietnam. This rare conifer was first recorded in 2002 from northern Vietnam and then in 2013 from Guangxi, China, yet nothing is known about its genetic diversity nor ploidy level variation, although previous cytological study suggest that Vietnamese populations are tetraploids. There have been about 45 individuals found to date in Guangxi, China. Here, we genotyped 33 X. vietnamensis individuals using 20 newly developed, polymorphic microsatellite loci, to assess the genetic variability of its extremely small populations. The genetic diversity of X. vietnamensis (HE = 0.511) was lower than that of two other heliophile species, Calocedrus macrolepis and Fokienia hodginsii, which have similar distribution ranges. This is consistent with the signature of a genetic bottleneck detected in X. vietnamensis. Although the population genetic differentiation coefficient across loci is moderate (FST = 0.125), STRUCTURE analysis revealed two distinct genetic clusters, namely the northern and southern population groups; DAPC analysis grouped the southern populations together in one cluster separate from the northern populations; AMOVA analysis detected a significant genetic differentiation between the two population groups (FRT = 0.089, p &lt; 0.05), and BARRIER analysis detected a genetic barrier between them. Moreover, we detected differentiation in ploidy level between northern and southern populations, sampled individuals from the former and the later are all diploid and tetraploid cytotypes with mean genome sizes of 26.08 and 48.02 pg/2C, respectively. We deduced that heterogeneous geomorphology and historical events (e.g., human deforestation, Quaternary climate oscillations) may have contributed to population fragmentation and small population size in X. vietnamensis. Considering both genetic and ploidy level differentiation, we propose that two different management units (northern and southern) should be considered and a combination of in situ and ex situ conservation measures should be employed to preserve populations of this endangered species in southwestern China in the light of our findings.


2021 ◽  
Vol 845 (1) ◽  
pp. 012013
Author(s):  
M L Dubrovsky ◽  
R V Papikhin ◽  
S A Muratova

Abstract For use in breeding work, the methods of complex accelerated cytological diagnosis of genotypes of fruit and berry crops with an altered ploidy level were optimized. The proposed diagnostic method was tested on polyploids of the genus Malus, Fragaria, Ribes, Rubus, rowan-pear hybrids and is recommended for wide scientific and practical application in the plant breeding and cytology. The effectiveness of this method is ensured by its availability and reliable statistical differences in accounting parameters. In a comprehensive cytological diagnosis of forms of fruit and berry crops with an increased level of ploidy, it is proposed to first study the morphoanatomical traits (sizes and proportions of stomatal guard cells, the number of chloroplasts in them, the diameter of pollen grains). This will significantly reduce the time of laboratory analysis and field assessment by deleting forms with unchanged indicator values.


Sign in / Sign up

Export Citation Format

Share Document