trigeneric hybrids
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)



2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Ying Chen ◽  
Biran Gong ◽  
Ling Xi ◽  
Lin Tang ◽  
Wei Zhu ◽  
...  


Genome ◽  
2017 ◽  
Vol 60 (8) ◽  
pp. 687-694 ◽  
Author(s):  
Yi Dai ◽  
Yamei Duan ◽  
Dawn Chi ◽  
Huiping Liu ◽  
Shuai Huang ◽  
...  

It is very important to use chromosome-specific markers for identifying alien chromosomes in advanced generations of distant hybridization. The chromosome-specific markers of rye and Thinopyrum elongatum, as well as genomic in situ hybridization, were used to identify the alien chromosomes in eight lines that were derived from the crossing between Triticum trititrigia (AABBEE) and triticale (AABBRR). The results showed that four lines contained all rye chromosomes but no Th. elongatum chromosomes. The line RE36-1 contained all of the rye chromosomes except for chromosome 2R. The lines RE33-2 and RE62-1 contained all rye chromosomes and 1E and 5E translocated chromosome, respectively. The line RE24-4 contained 12 rye chromosomes plus a 7E chromosome or 12 rye chromosomes plus one R–E translocated chromosome. Chromosome identification in the above lines was consistent using chromosome-specific markers and genomic in situ hybridization. These chromosome-specific markers provide useful tools for detecting alien chromosomes in trigeneric hybrids, and these lines could be utilized as valuable germplasm in wheat improvement.



2016 ◽  
Vol 148 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Hou-Yang Kang ◽  
Juan Huang ◽  
Wei Zhu ◽  
Dai-Yan Li ◽  
Cheng-Dou Diao ◽  
...  

Trigeneric hybrids are commonly used as bridges to transfer genes from some wild species to cultivated wheat and to measure the genomic interaction between donor species. We previously reported that trigeneric germplasms were produced by crossing wheat-Psathyrostachys huashanica amphiploids (PHW-SA, 2n = 8x = 56, AABBDDNsNs) with hexaploid triticale (Zhongsi 828, 2n = 6x = 42, AABBRR). In the present study, chromosome pairing behavior and the genome constitution of the F4 progenies of wheat-rye-P. huashanica trigeneric hybrids were studied. Cytological analysis showed that the chromosome number of F4 progenies ranged from 39 to 46, and 57.5% of them had 42 chromosomes. The mean meiotic configuration of F4 lines was 1.71 univalents, 20.26 bivalents, 0.04 trivalents, and 0.001 quadrivalents per pollen mother cell. Among the lines with 2n = 42, the average pairing configuration was 1.21 univalents, 16.22 ring bivalents, 4.16 rod bivalents, and 0.01 trivalents. This result indicated that these lines were cytologically stable. Other lines with 2n = 39, 40, 41, 43, 44, 45, and 46, bearing a high number of univalents or multivalents, showed abnormal meiotic behavior. Genomic in situ hybridization (GISH) revealed that all F4 lines had 11-14 rye chromosomes, but no P. huashanica chromosomes. The complete set of 14 rye chromosomes was found in 19 lines. At meiosis, GISH detected 1-6 univalents with hybridization signals of rye in 13 lines. Bivalents with fluorescence signals were identified in each line, ranging from 3 to 7. A quadrivalent with hybridization signals was observed in only 1 line, K13-714-8. Lagging chromosomes, chromosome bridges, micronuclei, and chromosome fragments hybridizing with the probe were not discovered in any of the lines. These results inferred that the behavior of rye chromosomes was normal during meiosis. In addition, 21 lines of 2n = 42 (91.3%) with 12 or 14 rye chromosomes, always contained 6 or 7 bivalents bearing fluorescence signals. This suggested that the rye chromosomes exhibiting complete pairing in these lines were cytologically stable during meiosis and may therefore be considered as new hexaploid triticales. Thus, these lines might be potential materials for further hexaploid triticale improvement.



Genome ◽  
2012 ◽  
Vol 55 (5) ◽  
pp. 383-390 ◽  
Author(s):  
Houyang Kang ◽  
Jian Zeng ◽  
Quan Xie ◽  
Shan Tao ◽  
Meiyu Zhong ◽  
...  

Trigeneric hybrids offer opportunities to transfer alien traits into cultivated wheat. In this study, a new trigeneric hybrid involving species of Triticum , Psathyrostachys , and Thinopyrum was synthesized by crossing Triticum aestivum L. (wheat) – Thinopyrum intermedium (Host) Barkworth & D.R. Dewey amphiploid Zhong 3 with wheat – Psathyrostachys huashanica Keng ex Kuo amphiploid PHW-SA. Crossability of the two amphiploids was 19.74%, and the fertility of the hybrid was 16.20%. The mean meiotic configuration of the trigeneric hybrid (2n = 56) was 13.06 I + 17.24 IIring + 3.73 IIrod + 0.28 III + 0.04 IV. GISH analysis indicated that the trigeneric F1 had seven P. huashanica chromosomes and seven Th. intermedium chromosomes. The mean chromosome numbers of F2, F3, and F4 progenies were 2n = 49.24, 2n = 48.13, and 2n = 46.78, respectively, a gradual decrease. GISH analysis revealed that most F2 and F3 plants had 2–10 Th. intermedium chromosomes and 0–4 P. huashanica chromosomes. In the F4 progenies, 1–7 Th. intermedium chromosomes were labeled, but no P. huashanica chromosomes were detected. It seems that Th. intermedium chromosomes are more likely than P. huashanica chromosomes to be transmitted to the progenies. The stripe rust response of PHW-SA was expressed in the F1 and some F2 and F3 progenies. The trigeneric hybrid could be a useful bridge for transfering P. huashanica and Th. intermedium chromosomes to common wheat.



Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1173-1181 ◽  
Author(s):  
Prem P Jauhar ◽  
M Doğramaci ◽  
T S Peterson

Wild grasses in the tribe Triticeae, some in the primary or secondary gene pool of wheat, are excellent reservoirs of genes for superior agronomic traits, including resistance to various diseases. Thus, the diploid wheatgrasses Thinopyrum bessarabicum (Savul. and Rayss) Á. Löve (2n = 2x = 14; JJ genome) and Lophopyrum elongatum (Host) Á. Löve (2n = 2x = 14; EE genome) are important sources of genes for disease resistance, e.g., Fusarium head blight resistance that may be transferred to wheat. By crossing fertile amphidiploids (2n = 4x = 28; JJEE) developed from F1 hybrids of the 2 diploid species with appropriate genetic stocks of durum wheat, we synthesized trigeneric hybrids (2n = 4x = 28; ABJE) incorporating both the J and E genomes of the grass species with the durum genomes A and B. Trigeneric hybrids with and without the homoeologous-pairing suppressor gene, Ph1, were produced. In the absence of Ph1, the chances of genetic recombination between chromosomes of the 2 useful grass genomes (JE) and those of the durum genomes (AB) would be enhanced. Meiotic chromosome pairing was studied using both conventional staining and fluorescent genomic in situ hybridization (fl-GISH). As expected, the Ph1-intergeneric hybrids showed low chromosome pairing (23.86% of the complement), whereas the trigenerics with ph1b (49.49%) and those with their chromosome 5B replaced by 5D (49.09%) showed much higher pairing. The absence of Ph1 allowed pairing and, hence, genetic recombination between homoeologous chromosomes. Fl-GISH analysis afforded an excellent tool for studying the specificity of chromosome pairing: wheat with grass, wheat with wheat, or grass with grass. In the trigeneric hybrids that lacked chromosome 5B, and hence lacked the Ph1 gene, the wheat–grass pairing was elevated, i.e., 2.6 chiasmata per cell, a welcome feature from the breeding standpoint. Using Langdon 5D(5B) disomic substitution for making trigeneric hybrids should promote homoeologous pairing between durum and grass chromosomes and hence accelerate alien gene transfer into the durum genomes.Key words: alien gene transfer, chiasma (xma) frequency, chromosome pairing, fluorescent genomic in situ hybridization (fl-GISH), homoeologous-pairing regulator, specificity of chromosome pairing, wheatgrass.





Genome ◽  
1989 ◽  
Vol 32 (2) ◽  
pp. 169-172 ◽  
Author(s):  
J. Orellana ◽  
J. F. Vazquez ◽  
J. M. Carrillo

Using C-banding, homologous and homoeologous meiotic pairing between wheat (AB), rye (R), and Aegilops caudata (C) genomes were estimated at meiotic metaphase I in trigeneric hybrids (AABBRC; 2n = 6x = 42). In all hybrids, the C-genome chromosomes pair homoeologously only with chromosomes of the A genome, but not with chromosomes of the B genome or R genome. The A – C pairing was restricted to trivalents (0.15 per cell), each composed of two A-genome and one C-genome chromosomes. These preliminary data suggest that the C genome of Ae. caudata is probably more closely related to the A genome than to the B genome of wheat.Key words: trigeneric hybrid, wheat, rye, Aegilops, genome analysis, meiosis.



Sign in / Sign up

Export Citation Format

Share Document