Genome constitution of Elymus tangutorum (Poaceae: Triticeae) inferred from meiotic pairing behavior and genomic in situ hybridization

2015 ◽  
Vol 53 (6) ◽  
pp. 529-534 ◽  
Author(s):  
Cai-Rong Yang ◽  
Hai-Qin Zhang ◽  
Fu-Qiang Zhao ◽  
Xiao-Yan Liu ◽  
Xing Fan ◽  
...  



Genome ◽  
2001 ◽  
Vol 44 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Marian Ørgaard ◽  
Kesara Anamthawat-Jónsson

The genome constitution of Icelandic Elymus caninus, E. alaskanus, and Elytrigia repens was examined by fluorescence in situ hybridization using genomic DNA and selected cloned sequences as probes. Genomic in situ hybridization (GISH) of Hordeum brachyantherum ssp. californicum (diploid, H genome) probe confirmed the presence of an H genome in the two tetraploid Elymus species and identified its presence in the hexaploid Elytrigia repens. The H chromosomes were painted uniformly except for some chromosomes of Elytrigia repens which showed extended unlabelled pericentromeric and subterminal regions. A mixture of genomic DNA from H. marinum ssp. marinum (diploid,Xa genome) and H. murinum ssp. leporinum (tetraploid,Xu genome) did not hybridize to chromosomes of the Elymus species or Elytrigia repens, confirming that these genomes were different from the H genome. The St genomic probe from Pseudoroegneria spicata (diploid) did not discriminate between the genomes of the Elymus species, whereas it produced dispersed and spotty hybridization signals most likely on the two St genomes of Elytrigia repens. Chromosomes of the two genera Elymus and Elytrigia showed different patterns of hybridization with clones pTa71 and pAes41, while clones pTa1 and pSc119.2 hybridized only to Elytrigia chromosomes. Based on FISH with these genomic and cloned probes, the two Elymus species are genomically similar, but they are evidently different from Elytrigia repens. Therefore the genomes of Icelandic Elymus caninus and E. alaskanus remain as StH, whereas the genomes of Elytrigia repens are proposed as XXH.Key words: Elymus, Elytrigia, H genome, St genome, in situ hybridization.



2020 ◽  
Vol 160 (1) ◽  
pp. 47-56
Author(s):  
Aybeniz J. Aliyeva ◽  
András Farkas ◽  
Naib Kh. Aminov ◽  
Klaudia Kruppa ◽  
Márta Molnár-Láng ◽  
...  

The chromosomal constitution of 9 dwarf (D) and 8 semidwarf (SD) lines derived by crossing hexaploid Triticale line NA-75 (AABBRR, 2n = 6x = 42) with Triticumaestivum (AABBDD, 2n = 6x = 42) cv. Chinese Spring was investigated using molecular cytogenetic techniques: fluorescence in situ hybridization and genomic in situ hybridization. A wheat-rye translocation (T4DS.7RL), 8 substitution lines, and a ditelosomic addition line (7RSdt) were identified. In the substitution lines, 1, 2, or 4 pairs of wheat chromosomes, belonging to the A, B, or D genome, were replaced by rye chromosomes. Substitutions between chromosomes belonging to different wheat genomes [5B(5A), 1D(1B)] also occurred. The lines were genetically stable, each carrying 42 chromosomes, except the wheat-rye ditelosomic addition line, which carried 21 pairs of wheat chromosomes and 1 pair of rye telocentric chromosomes (7RS). The chromosome pairing behavior of the lines was studied during metaphase I of meiosis. The chromosome pairing level and the number of ring bivalents were different for each line. Besides rod bivalents, univalent and multivalent associations (tri- and quadrivalents) were also detected. The main goal of the experiment was to develop genetically stable wheat/Triticale recombinant lines carrying chromosomes/chromatin fragments originating from the R genome of Triticale line NA-75. Introgression of rye genes into hexaploid wheat can broaden its genetic diversity, and the newly developed lines can be used in wheat breeding programs.



Chromosoma ◽  
1995 ◽  
Vol 103 (8) ◽  
pp. 554-558 ◽  
Author(s):  
Bego�a Fern�ndez-Calv�n ◽  
Elena Benavente ◽  
Juan Orellana


Genome ◽  
2003 ◽  
Vol 46 (2) ◽  
pp. 314-322 ◽  
Author(s):  
L Malysheva ◽  
T Sjakste ◽  
F Matzk ◽  
M Röder ◽  
M Ganal

In the present investigation, genomic in situ hybridization (GISH) and barley microsatellite markers were used to analyse the genome constitution of wheat–barley hybrids from two backcross generations (BC1 and BC2). Two BC1 plants carried 3 and 6 barley chromosomes, respectively, according to GISH data. Additional chromosomal fragments were detected using microsatellites. Five BC2 plants possessed complete barley chromosomes or chromosome segments and six BC2 plants did not preserve barley genetic material. Molecular markers revealed segments of the barley genome with the size of one marker only, which probably resulted from recombination between wheat and barley chromosomes. The screening of backcrossed populations from intergeneric hybrids could be effectively conducted using both genomic in situ hybridization and molecular microsatellite markers. GISH images presented a general overview of the genome constitution of the hybrid plants, while microsatellite analysis revealed the genetic identity of the alien chromosomes and chromosomal segments introgressed. These methods were complementary and provided comprehensive information about the genomic constitution of the plants produced.Key words: wheat–barley hybrids, introgressive hybridization, recombination, molecular markers, genomic in situ hybridization (GISH).





Chromosoma ◽  
1995 ◽  
Vol 103 (8) ◽  
pp. 554-558
Author(s):  
Bego�a Fern�ndez-Calv�n ◽  
Elena Benavente ◽  
Juan Orellana


Genome ◽  
2000 ◽  
Vol 43 (4) ◽  
pp. 712-719 ◽  
Author(s):  
George Fedak ◽  
Qin Chen ◽  
Robert L Conner ◽  
André Laroche ◽  
René Petroski ◽  
...  

A combination of genomic in situ hybridization (GISH) and meiotic pairing analysis of wheat-Thinopyrum partial amphiploids was employed to identify the genomic constitution and relationships between partial amphiploids derived from wheat and wheatgrass crosses. On the basis of similarities in the meiotic behavior and GISH patterns, the alien chromosomes of two of eight partial amphiploids, TAF46 and 'Otrastayuskaya 38', were judged to originate from Th. intermedium, whereas Th. ponticum was one of the parents of the other six partial amphiploids; PWM706, PWM206, PWM209, PWMIII, OK7211542, and Ag-wheat hybrid. Each of these partial amphiploids was found to contain a synthetic alien genome composed of different combinations of St-, J-, or Js-genome chromosomes. For relatedness of partial amphiploid lines, meiotic analysis of F1 hybrids and GISH results were generally complementary, but the latter offered greater precision in identifying constituent genomes.Key words: wheat, Thinopyrum, partial amphiploids, GISH, meiotic analysis.



Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1173-1181 ◽  
Author(s):  
Prem P Jauhar ◽  
M Doğramaci ◽  
T S Peterson

Wild grasses in the tribe Triticeae, some in the primary or secondary gene pool of wheat, are excellent reservoirs of genes for superior agronomic traits, including resistance to various diseases. Thus, the diploid wheatgrasses Thinopyrum bessarabicum (Savul. and Rayss) Á. Löve (2n = 2x = 14; JJ genome) and Lophopyrum elongatum (Host) Á. Löve (2n = 2x = 14; EE genome) are important sources of genes for disease resistance, e.g., Fusarium head blight resistance that may be transferred to wheat. By crossing fertile amphidiploids (2n = 4x = 28; JJEE) developed from F1 hybrids of the 2 diploid species with appropriate genetic stocks of durum wheat, we synthesized trigeneric hybrids (2n = 4x = 28; ABJE) incorporating both the J and E genomes of the grass species with the durum genomes A and B. Trigeneric hybrids with and without the homoeologous-pairing suppressor gene, Ph1, were produced. In the absence of Ph1, the chances of genetic recombination between chromosomes of the 2 useful grass genomes (JE) and those of the durum genomes (AB) would be enhanced. Meiotic chromosome pairing was studied using both conventional staining and fluorescent genomic in situ hybridization (fl-GISH). As expected, the Ph1-intergeneric hybrids showed low chromosome pairing (23.86% of the complement), whereas the trigenerics with ph1b (49.49%) and those with their chromosome 5B replaced by 5D (49.09%) showed much higher pairing. The absence of Ph1 allowed pairing and, hence, genetic recombination between homoeologous chromosomes. Fl-GISH analysis afforded an excellent tool for studying the specificity of chromosome pairing: wheat with grass, wheat with wheat, or grass with grass. In the trigeneric hybrids that lacked chromosome 5B, and hence lacked the Ph1 gene, the wheat–grass pairing was elevated, i.e., 2.6 chiasmata per cell, a welcome feature from the breeding standpoint. Using Langdon 5D(5B) disomic substitution for making trigeneric hybrids should promote homoeologous pairing between durum and grass chromosomes and hence accelerate alien gene transfer into the durum genomes.Key words: alien gene transfer, chiasma (xma) frequency, chromosome pairing, fluorescent genomic in situ hybridization (fl-GISH), homoeologous-pairing regulator, specificity of chromosome pairing, wheatgrass.



Sign in / Sign up

Export Citation Format

Share Document