Evaluation of Calcium Polysulfide as a Reducing Agent for the Restoration of a Cr(VI)-Contaminated Aquifer

Author(s):  
T. Mpouras ◽  
N. Papassiopi ◽  
K. Lagkouvardos ◽  
C. Mystrioti ◽  
D. Dermatas
INEOS OPEN ◽  
2020 ◽  
Vol 3 ◽  
Author(s):  
O. I. Afanasyev ◽  
◽  
D. Chusov ◽  

Carbon monoxide is a unique reducing agent that is only gaining popularity in organic chemistry. This review highlights the main approaches to the application of CO as a reducing agent, summarizes and critically analyzes the key trends in this field, and describes the current development prospects. Potentially the most selective and efficient route for the realization of these processes is demonstrated.


1967 ◽  
Vol 56 (1_Suppl) ◽  
pp. S62
Author(s):  
M. Wenzel ◽  
K. Pollow
Keyword(s):  

2018 ◽  
Author(s):  
Chandan Dey ◽  
Ronny Neumann

<p>A manganese substituted Anderson type polyoxometalate, [MnMo<sub>6</sub>O<sub>24</sub>]<sup>9-</sup>, tethered with an anthracene photosensitizer was prepared and used as catalyst for CO<sub>2</sub> reduction. The polyoxometalate-photosensitizer hybrid complex, obtained by covalent attachment of the sensitizer to only one face of the planar polyoxometalate, was characterized by NMR, IR and mass spectroscopy. Cyclic voltammetry measurements show a catalytic response for the reduction of carbon dioxide, thereby suggesting catalysis at the manganese site on the open face of the polyoxometalate. Controlled potentiometric electrolysis showed the reduction of CO<sub>2</sub> to CO with a TOF of ~15 sec<sup>-1</sup>. Further photochemical reactions showed that the polyoxometalate-anthracene hybrid complex was active for the reduction of CO<sub>2</sub> to yield formic acid and/or CO in varying amounts dependent on the reducing agent used. Control experiments showed that the attachment of the photosensitizer to [MnMo<sub>6</sub>O<sub>24</sub>]<sup>9-</sup> is necessary for photocatalysis.</p><div><br></div>


Author(s):  
Walber Ronconi dos Santos ◽  
Edson Soares ◽  
Renato Siqueira

2000 ◽  
Vol 42 (5-6) ◽  
pp. 371-376 ◽  
Author(s):  
J.A. Puhakka ◽  
K.T. Järvinen ◽  
J.H. Langwaldt ◽  
E.S. Melin ◽  
M.K. Männistö ◽  
...  

This paper reviews ten years of research on on-site and in situ bioremediation of chlorophenol contaminated groundwater. Laboratory experiments on the development of a high-rate, fluidized-bed process resulted in a full-scale, pump-and-treat application which has operated for several years. The system operates at ambient groundwater temperature of 7 to 9°C at 2.7 d hydraulic retention time and chlorophenol removal efficiencies of 98.5 to 99.9%. The microbial ecology studies of the contaminated aquifer revealed a diverse chlorophenol-degrading community. In situ biodegradation of chlorophenols is controlled by oxygen availability, only. Laboratory and pilot-scale experiments showed the potential for in situ aquifer bioremediation with iron oxidation and precipitation as a potential problem.


2020 ◽  
Vol 12 (3) ◽  
pp. 255-264
Author(s):  
Yu. V. Dubinin ◽  
N. A. Tsereshko ◽  
V. A. Yakovlev
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document