Multi-source domain adaptation for image classification

2020 ◽  
Vol 31 (6) ◽  
Author(s):  
Morvarid Karimpour ◽  
Shiva Noori Saray ◽  
Jafar Tahmoresnezhad ◽  
Mohammad Pourmahmood Aghababa
2021 ◽  
pp. 108238
Author(s):  
Yueming Yin ◽  
Zhen Yang ◽  
Haifeng Hu ◽  
Xiaofu Wu

2021 ◽  
Vol 91 ◽  
pp. 107041
Author(s):  
Heyou Chang ◽  
Fanlong Zhang ◽  
Shuai Ma ◽  
Guangwei Gao ◽  
Hao Zheng ◽  
...  

2021 ◽  
pp. 1-7
Author(s):  
Rong Chen ◽  
Chongguang Ren

Domain adaptation aims to solve the problems of lacking labels. Most existing works of domain adaptation mainly focus on aligning the feature distributions between the source and target domain. However, in the field of Natural Language Processing, some of the words in different domains convey different sentiment. Thus not all features of the source domain should be transferred, and it would cause negative transfer when aligning the untransferable features. To address this issue, we propose a Correlation Alignment with Attention mechanism for unsupervised Domain Adaptation (CAADA) model. In the model, an attention mechanism is introduced into the transfer process for domain adaptation, which can capture the positively transferable features in source and target domain. Moreover, the CORrelation ALignment (CORAL) loss is utilized to minimize the domain discrepancy by aligning the second-order statistics of the positively transferable features extracted by the attention mechanism. Extensive experiments on the Amazon review dataset demonstrate the effectiveness of CAADA method.


2015 ◽  
Vol 53 (7) ◽  
pp. 3550-3564 ◽  
Author(s):  
Giona Matasci ◽  
Michele Volpi ◽  
Mikhail Kanevski ◽  
Lorenzo Bruzzone ◽  
Devis Tuia

Author(s):  
Hang Li ◽  
Xi Chen ◽  
Ju Wang ◽  
Di Wu ◽  
Xue Liu

WiFi-based Device-free Passive (DfP) indoor localization systems liberate their users from carrying dedicated sensors or smartphones, and thus provide a non-intrusive and pleasant experience. Although existing fingerprint-based systems achieve sub-meter-level localization accuracy by training location classifiers/regressors on WiFi signal fingerprints, they are usually vulnerable to small variations in an environment. A daily change, e.g., displacement of a chair, may cause a big inconsistency between the recorded fingerprints and the real-time signals, leading to significant localization errors. In this paper, we introduce a Domain Adaptation WiFi (DAFI) localization approach to address the problem. DAFI formulates this fingerprint inconsistency issue as a domain adaptation problem, where the original environment is the source domain and the changed environment is the target domain. Directly applying existing domain adaptation methods to our specific problem is challenging, since it is generally hard to distinguish the variations in the different WiFi domains (i.e., signal changes caused by different environmental variations). DAFI embraces the following techniques to tackle this challenge. 1) DAFI aligns both marginal and conditional distributions of features in different domains. 2) Inside the target domain, DAFI squeezes the marginal distribution of every class to be more concentrated at its center. 3) Between two domains, DAFI conducts fine-grained alignment by forcing every target-domain class to better align with its source-domain counterpart. By doing these, DAFI outperforms the state of the art by up to 14.2% in real-world experiments.


Author(s):  
Dan Lin ◽  
Jianzhe Lin ◽  
Liang Zhao ◽  
Z. Jane Wang ◽  
Zhikui Chen

Author(s):  
Renjun Xu ◽  
Pelen Liu ◽  
Yin Zhang ◽  
Fang Cai ◽  
Jindong Wang ◽  
...  

Domain adaptation (DA) has achieved a resounding success to learn a good classifier by leveraging labeled data from a source domain to adapt to an unlabeled target domain. However, in a general setting when the target domain contains classes that are never observed in the source domain, namely in Open Set Domain Adaptation (OSDA), existing DA methods failed to work because of the interference of the extra unknown classes. This is a much more challenging problem, since it can easily result in negative transfer due to the mismatch between the unknown and known classes. Existing researches are susceptible to misclassification when target domain unknown samples in the feature space distributed near the decision boundary learned from the labeled source domain. To overcome this, we propose Joint Partial Optimal Transport (JPOT), fully utilizing information of not only the labeled source domain but also the discriminative representation of unknown class in the target domain. The proposed joint discriminative prototypical compactness loss can not only achieve intra-class compactness and inter-class separability, but also estimate the mean and variance of the unknown class through backpropagation, which remains intractable for previous methods due to the blindness about the structure of the unknown classes. To our best knowledge, this is the first optimal transport model for OSDA. Extensive experiments demonstrate that our proposed model can significantly boost the performance of open set domain adaptation on standard DA datasets.


Sign in / Sign up

Export Citation Format

Share Document