A comparison of global optimization algorithms applied to a ride comfort optimization problem

2002 ◽  
Vol 24 (2) ◽  
pp. 157-167 ◽  
Author(s):  
P. Eriksson ◽  
J.S. Arora
2020 ◽  
Vol 25 (1) ◽  
pp. 14-22
Author(s):  
Juan David Bastidas-Rodriguez ◽  
Jorge Mario Cruz-Duarte ◽  
Carlos Rodrigo Correa-Cely

Models of series-parallel (SP) photovoltaic (PV) arrays focus on the system of nonlinear equations that represents the array’s electrical behavior. The solution of the system of nonlinear equations can be posed as an optimization problem and solved with different methods; however, the models do not formulate the optimization problem and do not evaluate different optimization algorithms for its solution. This paper proposes a solution, using global optimization algorithms, of the mathematical model that describes the electrical behavior of a SP generator, operating under uniform and partial shading conditions. Such a model is constructed by dividing the generator into strings and representing each module in the string with the single-diode model. Consequently, for each string a system of nonlinear equations is build applying the Kirchhoff’s laws, where the unknowns are the modules’ voltages. The solution of the resulting nonlinear equation system is posed as an optimization problem, where the objective function is defined as the sum of the squared of each nonlinear equation. Minimum and maximum values of each voltage are defined from the datasheet information of the modules and bypass diodes. As a demonstrative example, we arbitrarily select two well-known algorithms to solve this problem: Genetic Algorithms and Particle Swarm Optimization. Simulation results show that both algorithms solve the optimization problem and allow the reproduction of the generator’s characteristic curves. Moreover, the results also indicate that the optimization problem is correctly defined, which opens the possibility explore other optimization algorithms to reduce the computation time.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Weixiang Wang ◽  
Youlin Shang ◽  
Ying Zhang

A filled function approach is proposed for solving a non-smooth unconstrained global optimization problem. First, the definition of filled function in Zhang (2009) for smooth global optimization is extended to non-smooth case and a new one is put forwarded. Then, a novel filled function is proposed for non-smooth the global optimization and a corresponding non-smooth algorithm based on the filled function is designed. At last, a numerical test is made. The computational results demonstrate that the proposed approach is effcient and reliable.


2021 ◽  
Vol 1 ◽  
pp. 113-117
Author(s):  
Dmitry Syedin ◽  

The work is devoted to the hybridization of stochastic global optimization algorithms depending on their architecture. The main methods of hybridization of stochastic optimization algorithms are listed. An example of hybridization of the algorithm is given, the modification of which became possible due to taking into account the characteristic architecture of the M-PCA algorithm.


Author(s):  
Nicholas R. Radcliffe ◽  
David R. Easterling ◽  
Layne T. Watson ◽  
Michael L. Madigan ◽  
Kathleen A. Bieryla

2014 ◽  
Vol 24 (3) ◽  
pp. 535-550 ◽  
Author(s):  
Jiaqi Zhao ◽  
Yousri Mhedheb ◽  
Jie Tao ◽  
Foued Jrad ◽  
Qinghuai Liu ◽  
...  

Abstract Scheduling virtual machines is a major research topic for cloud computing, because it directly influences the performance, the operation cost and the quality of services. A large cloud center is normally equipped with several hundred thousand physical machines. The mission of the scheduler is to select the best one to host a virtual machine. This is an NPhard global optimization problem with grand challenges for researchers. This work studies the Virtual Machine (VM) scheduling problem on the cloud. Our primary concern with VM scheduling is the energy consumption, because the largest part of a cloud center operation cost goes to the kilowatts used. We designed a scheduling algorithm that allocates an incoming virtual machine instance on the host machine, which results in the lowest energy consumption of the entire system. More specifically, we developed a new algorithm, called vision cognition, to solve the global optimization problem. This algorithm is inspired by the observation of how human eyes see directly the smallest/largest item without comparing them pairwisely. We theoretically proved that the algorithm works correctly and converges fast. Practically, we validated the novel algorithm, together with the scheduling concept, using a simulation approach. The adopted cloud simulator models different cloud infrastructures with various properties and detailed runtime information that can usually not be acquired from real clouds. The experimental results demonstrate the benefit of our approach in terms of reducing the cloud center energy consumption


Sign in / Sign up

Export Citation Format

Share Document