Data-driven performance-based topology optimization of uncertain wind-excited tall buildings

2016 ◽  
Vol 54 (6) ◽  
pp. 1379-1402 ◽  
Author(s):  
Sarah Bobby ◽  
Seymour M. J. Spence ◽  
Ahsan Kareem
Author(s):  
Benjamin M. Weiss ◽  
Joshua M. Hamel ◽  
Mark A. Ganter ◽  
Duane W. Storti

The topology optimization (TO) of structures to be produced using additive manufacturing (AM) is explored using a data-driven constraint function that predicts the minimum producible size of small features in different shapes and orientations. This shape- and orientation-dependent manufacturing constraint, derived from experimental data, is implemented within a TO framework using a modified version of the Moving Morphable Components (MMC) approach. Because the analytic constraint function is fully differentiable, gradient-based optimization can be used. The MMC approach is extended in this work to include a “bootstrapping” step, which provides initial component layouts to the MMC algorithm based on intermediate Solid Isotropic Material with Penalization (SIMP) topology optimization results. This “bootstrapping” approach improves convergence compared to reference MMC implementations. Results from two compliance design optimization example problems demonstrate the successful integration of the manufacturability constraint in the MMC approach, and the optimal designs produced show minor changes in topology and shape compared to designs produced using fixed-radius filters in the traditional SIMP approach. The use of this data-driven manufacturability constraint makes it possible to take better advantage of the achievable complexity in additive manufacturing processes, while resulting in typical penalties to the design objective function of around only 2% when compared to the unconstrained case.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Benjamin M. Weiss ◽  
Joshua M. Hamel ◽  
Mark A. Ganter ◽  
Duane W. Storti

Abstract The topology optimization (TO) of structures to be produced using additive manufacturing (AM) is explored using a data-driven constraint function that predicts the minimum producible size of small features in different shapes and orientations. This shape- and orientation-dependent manufacturing constraint, derived from experimental data, is implemented within a TO framework using a modified version of the moving morphable components (MMC) approach. Because the analytic constraint function is fully differentiable, gradient-based optimization can be used. The MMC approach is extended in this work to include a “bootstrapping” step, which provides initial component layouts to the MMC algorithm based on intermediate solid isotropic material with penalization (SIMP) topology optimization results. This “bootstrapping” approach improves convergence compared with reference MMC implementations. Results from two compliance design optimization example problems demonstrate the successful integration of the manufacturability constraint in the MMC approach, and the optimal designs produced show minor changes in topology and shape compared to designs produced using fixed-radius filters in the traditional SIMP approach. The use of this data-driven manufacturability constraint makes it possible to take better advantage of the achievable complexity in additive manufacturing processes, while resulting in typical penalties to the design objective function of around only 2% when compared with the unconstrained case.


Author(s):  
Liwei Wang ◽  
Siyu Tao ◽  
Ping Zhu ◽  
Wei Chen

Abstract The data-driven approach is emerging as a promising method for the topological design of the multiscale structure with greater efficiency. However, existing data-driven methods mostly focus on a single class of unit cells without considering multiple classes to accommodate spatially varying desired properties. The key challenge is the lack of inherent ordering or “distance” measure between different classes of unit cells in meeting a range of properties. To overcome this hurdle, we extend the newly developed latent-variable Gaussian process (LVGP) to creating multi-response LVGP (MRLVGP) for the unit cell libraries of metamaterials, taking both qualitative unit cell concepts and quantitative unit cell design variables as mixed-variable inputs. The MRLVGP embeds the mixed variables into a continuous design space based on their collective effect on the responses, providing substantial insights into the interplay between different geometrical classes and unit cell materials. With this model, we can easily obtain a continuous and differentiable transition between different unit cell concepts that can render gradient information for multiscale topology optimization. While the proposed approach has a broader impact on the concurrent topological and material design of engineered systems, we demonstrate its benefits through multiscale topology optimization with aperiodic unit cells. Design examples reveal that considering multiple unit cell types can lead to improved performance due to the consistent load-transferred paths for micro- and macrostructures.


2020 ◽  
Vol 239 ◽  
pp. 106310 ◽  
Author(s):  
Ying Zhou ◽  
Haifei Zhan ◽  
Weihong Zhang ◽  
Jihong Zhu ◽  
Jinshuai Bai ◽  
...  

2014 ◽  
Vol 140 (5) ◽  
pp. 04014005 ◽  
Author(s):  
Seymour M. J. Spence ◽  
Ahsan Kareem
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document