Investigation of high frequency noise generation in the near-nozzle region of a jet using large eddy simulation

2007 ◽  
Vol 21 (4) ◽  
pp. 291-321 ◽  
Author(s):  
Ali Uzun ◽  
M. Yousuff Hussaini
AIAA Journal ◽  
2019 ◽  
Vol 57 (1) ◽  
pp. 327-340
Author(s):  
V. Sharifi ◽  
A. M. Kempf ◽  
C. Beck

Author(s):  
Yaser Khalighi ◽  
Frank Ham ◽  
Parviz Moin ◽  
Sanjiva K. Lele ◽  
Robert H. Schlinker

It is our premise that significant new advances in the understanding of noise generation mechanisms for jets and realistic methods for reducing this noise can be developed by exploiting high-fidelity computational fluid dynamics: namely large eddy simulation (LES). In LES, the important energy-containing structures in the flow are resolved explicitly, resulting in a time-dependent, three-dimensional realization of the turbulent flow. In the context of LES, the unsteady flow occurring in the jet plume (and its associated sound) can be accurately predicted without resort to adjustable empirical models. In such a framework, the nozzle geometry can be included to directly influence the turbulent flow including its coherent and fine-scale motions. The effects of propulsion system design choices and issues of integration with the airframe can also be logically addressed.


Akustika ◽  
2019 ◽  
Vol 34 ◽  
pp. 136-140
Author(s):  
Pavel Chernyshov ◽  
Vladislav Emelyanov ◽  
Aleksey Tsvetkov ◽  
Konstantin Volkov

Development of models and methods of modelling and simulation of the mechanisms of noise generation in jet streams plays an important role in various engineering applications due to strict requirements for noise produced by different industrial devices as well as the possibilities of using sound in technological processes. The computational tools of numerical simulation of gas dynamics and aeroacoustics processes in supersonic jet flows are considered, and noise sources and noise generation mechanisms in supersonic jets are discussed. The approach to numerical simulation is based on large-eddy simulation technique allowing to resolve eddy structures in the flowfield and to predict noise generation more accurately compared to the existing tools. The results obtained show the structure of under- and over-expanded supersonic jets and could be used to calculate sources of noise in supersonic flows.


Sign in / Sign up

Export Citation Format

Share Document