flame response
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 42)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 233 ◽  
pp. 111565
Author(s):  
Håkon T. Nygård ◽  
Giulio Ghirardo ◽  
Nicholas A. Worth

Author(s):  
Liangliang XU ◽  
Jianyi ZHENG ◽  
Guoqing WANG ◽  
Lei LI ◽  
Fei QI

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Virginel BODOC ◽  
Julien GARRAUD ◽  
Pierre Gajan

Author(s):  
Harish Subramanian Gopalakrishnan ◽  
Andrea Gruber ◽  
Jonas Moeck

Abstract Burning carbon-free fuels such as hydrogen in gas turbines promises power generation with reduced greenhouse gas emissions. A two-stage combustor architecture with an autoignition-stabilized flame in the second stage allows for efficient combustion of hydrogen fuels. However, interactions between the autoignition-stabilized flame and the acoustic field of the combustor may result in self-sustained oscillations of the flame front position and heat release rate, which severely affect the stable operation of the combustor. We study one such 'intrinsic' mode of interaction wherein acoustic waves generated by the unsteady flame travel upstream and modulate the incoming mixture resulting in flame front oscillations. In particular, we study the response of an autoignition-stabilized flame to upstream traveling acoustic disturbances in a one-dimensional configuration. We first present a numerical framework to calculate the response of autoignition-stabilized flames to acoustic and entropy disturbances in a one-dimensional combustor. The flame response is computed by solving the energy and species mass balance equations. We validate the framework with compressible direct numerical simulations. Lastly, we present results for the flame response to upstream traveling acoustic perturbations. The results show that autoignition-stabilized flames are highly sensitive to acoustic temperature fluctuations and exhibit a characteristic frequency-dependent response. Acoustic pressure and velocity fluctuations constructively or destructively superpose with temperature fluctuations, depending on the mean pressure and relative phase between the fluctuations. The findings of the present work are essential for understanding the intrinsic feedback mechanism in combustors with autoignition-stabilized flames.


2021 ◽  
Vol 230 ◽  
pp. 111412
Author(s):  
Naman Purwar ◽  
Matthias Haeringer ◽  
Bruno Schuermans ◽  
Wolfgang Polifke

2021 ◽  
pp. 107003
Author(s):  
Yongchao Sun ◽  
Mingbo Sun ◽  
Dan Zhao ◽  
Yong Chen ◽  
Guangwei Ma ◽  
...  

Author(s):  
Eirik Æs⊘y ◽  
José G. Aguilar ◽  
Mirko R. Bothien ◽  
Nicholas Worth ◽  
James Dawson

Abstract We investigate the occurrence of modulations in the gain and phase of flame transfer functions (FTF) measured in CH4/H2 and pure H2 flames. These are shown to be caused by flow disturbances originating from the screws used to centre the bluff body indicative of a more generalised phenomenon of convective wave propagation. Velocity measurements are performed around the injector dump plane, inside the injector pipe, and in the wake of the bluff body to provide detailed insight into the flow. Peaks corresponding to natural shedding frequencies of the screws appear in the unforced velocity spectra and the magnitude of these convective modes depends on the screws’ location. Flame imaging and PIV measurements show that these disturbances do not show up in the mean velocity and flame shape which appear axisymmetric. However, the rms fields capture a strong asymmetry due to convective disturbances. To quantify the role of these convective disturbances, hydrodynamic transfer functions are constructed from the forced cold flow, and similar modulations observed in the FTFs are found. A strong correlation is obtained between the two transfer functions, subsequently, the modulations are shown to be centered on the vortex shedding frequency corresponding to the first convective mode. For acoustic-convective interaction to be possible, the shedding (convective) frequency needs to be lower than the cut-off frequency of the flame response. This condition is shown to be more relevant for hydrogen flames compared to methane flames due to their shorter flame lengths and thus increased cut-off frequency.


Energetika ◽  
2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Harun Yilmaz ◽  
Omer Cam ◽  
Ilker Yilmaz

In a combustion device, unsteady heat release causes acoustic energy to increase when acoustic damping (energy loss) is not that effective, and, as a result, thermo-acoustic flame instabilities occur. In this study, effects of the swirler dh/do ratio (at different swirl numbers) on dynamic flame behaviour of the premixed 20%CNG/30%H2/30%CO/20%CO2 mixture under externally altered acoustic boundary conditions and stability limits (flashback and blowout equivalence ratios) of such mixture were investigated in a laboratory-scale variable geometric swirl number combustor. Therefore, swirl generators with different dh/do ratios (0.3 and 0.5) and geometric swirl numbers (0.4, 0.6, 0.8, 1.0 1.2 and 1.4) were designed and manufactured. Acoustic boundary conditions in the combustion chamber were altered using loudspeakers, and flame response to these conditions was perceived using photodiodes and pressure sensors. Dynamic flame behaviour of respective mixture was evaluated using luminous intensity and pressure profiles. Results showed that the dh/do ratio has a minor impact on dynamic flame behaviour.


2021 ◽  
Author(s):  
Jan Paul Beuth ◽  
Jakob G. R. von Saldern ◽  
Thomas Ludwig Kaiser ◽  
Thoralf G. Reichel ◽  
Christian Oliver Paschereit ◽  
...  

Abstract Gas turbine combustors are commonly operated with lean premix flames, allowing for high efficiencies and low emissions. These operating conditions are susceptible to thermoacoustic pulsations, originating from acoustic-flame coupling. To reveal this coupling, experiments or simulations of acoustically forced combustion systems are necessary, which are very challenging for real-scale applications. In this work we investigate the possibility to determine the flame response to acoustic forcing from snapshots of the unforced flow. This approach is based on three central hypothesis: first, the flame response is driven by flow fluctuations, second, these flow fluctuations are dominated by coherent structures driven by hydrodynamic instabilities, and third, these instabilities are driven by stochastic forcing of the background turbulence. As a consequence the dynamics in the natural flow should be low-rank and very similar to those of the acoustically forced system. In this work, the methodology is applied to experimental data of an industry-scale swirl combustor. A resolvent analysis is conducted based on the linearized Navier-Stokes equations to assure analytically the low-rank behavior of the flow dynamics. Then, these dynamics are extracted from flow snapshots using spectral proper orthogonal decomposition (SPOD). The extended SPOD is applied to determine the heat release rate fluctuations that are correlated with the flow dynamics. The low-rank flow and flame dynamics determined from the analytic and data-driven approach are then compared to the flow response determined from a classic phase average of the acoustically forced flow, which allow the research hypothesis to be evaluated. It is concluded that for the present combustor, the flow and flame dynamics are low-rank for a wider frequency range and the response to harmonic forcing can be determined quite accurately from unforced snapshots. The methodology further allows to isolate the frequency range where the flame response is predominantly driven by hydrodynamic instabilites.


2021 ◽  
Author(s):  
Harish S. Gopalakrishnan ◽  
Andrea Gruber ◽  
Jonas Moeck

Abstract Burning carbon-free fuels such as hydrogen in gas turbines promises power generation with strongly reduced greenhouse gas emissions. A two-stage combustor architecture with a propagation-stabilized flame in the first stage and an autoignition-stabilized flame in the second stage allows for efficient combustion of hydrogen fuels. However, interactions between the autoignition-stabilized flame and the acoustic field of the combustor may result in self-sustained oscillations of the flame front position and heat release rate, which severely affect the stable operation of the combustor. We study one such ‘intrinsic’ mode of interaction wherein acoustic waves generated by the unsteady flame front travel upstream and modulate the incoming mixture resulting in flame front oscillations. In particular, we study the response of an autoignition-stabilized flame to upstream traveling acoustic disturbances in a simplified one-dimensional configuration. We first present a numerical framework to calculate the response of autoignition-stabilized flames to acoustic and entropy disturbances in a one-dimensional combustor. The flame response is computed by solving the energy and species mass balance equations, coupled with detailed chemistry. We validate the framework with compressible direct numerical simulations. Lastly, we present results for the flame response to upstream traveling acoustic perturbations. The results show that autoignition-stabilized flames are highly sensitive to acoustic temperature fluctuations and exhibit a characteristic frequency-dependent response. Acoustic pressure and velocity fluctuations can either constructively or destructively superpose with temperature fluctuations, depending on the mean pressure and relative phase between the fluctuations. The findings of the present work are essential for understanding and modeling the intrinsic feedback mechanism in combustors with autoignition-stabilized flames.


Sign in / Sign up

Export Citation Format

Share Document