An accelerated 6-week return to full weight bearing after matrix-induced autologous chondrocyte implantation results in good clinical outcomes to 5 years post-surgery

Author(s):  
Jay R. Ebert ◽  
Michael Fallon ◽  
David J. Wood ◽  
Gregory C. Janes
2019 ◽  
Vol 7 (7_suppl5) ◽  
pp. 2325967119S0026
Author(s):  
Jay R. Ebert ◽  
Michael Fallon ◽  
Greg Janes ◽  
David Wood

Objectives: Matrix-induced autologous chondrocyte implantation (MACI) has demonstrated encouraging clinical outcomes in the treatment of symptomatic knee chondral defects. However, longer term results are still lacking and post-operative management has traditionally been conservative, with little available evidence on how best to progressively increase weight bearing (WB) and rehabilitation post-surgery. This study sought to investigate the longer term clinical and radiological outcomes following an accelerated (versus conservative) WB protocol after MACI. Methods: A randomized controlled study design was used to investigate outcomes in 70 patients who underwent MACI to the medial or lateral femoral condyle between November 2005 and November 2007, in conjunction with either an accelerated (AR, n=34, 8 weeks to full WB) or conservative (CR, n=36, 12 weeks to full WB) approach to post-operative WB rehabilitation. Patients were evaluated pre-surgery and at 3, 6, 12 and 24 months, as well as 5 years post-surgery. At minimum 10 year follow up (range 10.5-11.5 years), 60 patients (86%, AR=31, CR=29) were available for review. Clinical outcomes included the IKDC, KOOS, Lysholm, Cincinnati, Tegner, SF-36, Satisfaction, maximal isokinetic knee extensor and flexor strength and functional hop capacity. Limb Symmetry Indicies (LSIs) comparing the operated and non-operated limbs were calculated for strength and functional measures. High resolution magnetic resonance imaging (MRI) was undertaken to assess the quality and quantity of repair tissue as per the magnetic resonance observation of cartilage repair tissue (MOCART) scoring system. A combined MRI composite score was also evalauted. ANOVA investigated group differecnes over time. Results: While the AR group reported significantly less knee pain in the earlier post-operative timeline, no significant differences (p>0.05) were observed in patient demographics or injury/surgery characteristics between groups, nor clinical and MRI-based scores, at minimum 10 year post-operative follow up. All clinical scores across both groups significantly improved (p<0.001) to 5 years, maintained to 10 years. At minimum 10 years, no differences were observed in mean LSIs for maximal isokinetic knee extension strength (AR=96.8%, CR=97.9%), or the single (AR=95.5%, CR=98.9%) and triple hop (AR=96.7%, CR=99.6%) tests for distance. At a minimum 10 years 82.4% and 83.3% of patients in the AR and CR groups, respectively, demonstrated a good-excellent MRI composite score, while 79.4% and 83.3% demonstrated good-excellent tissue infill, as per the MOCART score. Graft failure was observed on MRI in 5 patients (8.3%, AR=2, CR=3) at 10 years post-surgery. At 10 years, 93.3% of patients were satisfied with MACI for relieving their pain, with 83.4% satisfied with their ability to participate in sport. Conclusion: MACI provided high levels of patient satisfaction and tissue durability beyond 10 years. The outcomes of this randomized trial demonstrate a safe and effective accelerated WB rehabilitation protocol, with improved early patient outcomes albeit comparable longer term results.


2014 ◽  
Vol 23 (3) ◽  
pp. 192-202 ◽  
Author(s):  
Jay R. Ebert ◽  
Peter K. Edwards

Autologous chondrocyte implantation (ACI) has demonstrated good clinical success in the repair of articular cartilage defects in the knee. Postoperative rehabilitation after ACI is considered critical in returning the patient to an optimal level of function by attempting to create the appropriate mechanical environment for cartilage regrowth, and it involves a progressive program that emphasizes full motion, progressive partial weight bearing (PWB), and controlled exercises. While evidence-based research is clearly lacking in all components of ACI rehabilitation, one important element in this treatment algorithm that has been subjected to some early scientific study is the gradual progression of the patient back to full weight-bearing (WB) gait after surgery. With the continual advancement of ACI surgical techniques, along with clinical experience and improved knowledge of histology and of the maturation process of chondrocytes, proposed postoperative WB protocols have evolved to better reflect the nature of the specific ACI surgery. The purpose of this article is to present the varied PWB programs that have been practiced alongside the evolving ACI surgical technique, the experimental basis for such protocols, the issues pertinent to the accurate prescription of WB, and future directions for developing such methods to best return patients to an optimal level of function after ACI.


Cartilage ◽  
2021 ◽  
pp. 194760352110309
Author(s):  
Alexandre Barbieri Mestriner ◽  
Jakob Ackermann ◽  
Gergo Merkely ◽  
Pedro Henrique Schmidt Alves Ferreira Galvão ◽  
Luiz Felipe Morlin Ambra ◽  
...  

Objective To determine the relationship between cartilage lesion etiology and clinical outcomes after second-generation autologous chondrocyte implantation (ACI) in the patellofemoral joint (PFJ) with a minimum of 2 years’ follow-up. Methods A retrospective review of all patients that underwent ACI in the PFJ by a single surgeon was performed. Seventy-two patients with a mean follow-up of 4.2 ± 2.0 years were enrolled in this study and were stratified into 3 groups based on the etiology of PFJ cartilage lesions: patellar dislocation (group 1; n = 23); nontraumatic lesions, including chondromalacia, osteochondritis dissecans, and degenerative defects (group 2; n = 28); and other posttraumatic lesions besides patellar dislocations (group 3; n = 21). Patient’s mean age was 29.6 ± 8.7 years. Patients in group 1 were significantly younger (25.4 ± 7.9 years) than group 2 (31.7 ± 9.6 years; P = 0.025) and group 3 (31.5 ± 6.6 years; P = 0.05). Body mass index averaged 26.2 ± 4.3 kg/m2, with a significant difference between group 1 (24.4 ± 3.2 kg/m2) and group 3 (28.7 ± 4.5 kg/m2; P = 0.005). A clinical comparison was established between groups based on patient-reported outcome measures (PROMs) and failure rates. Results Neither pre- nor postoperative PROMs differed between groups ( P > 0.05). No difference was seen in survivorship between groups (95.7% vs. 82.2% vs. 90.5%, P > 0.05). Conclusion Cartilage lesion etiology did not influence clinical outcome in this retrospective study after second generation ACI in the PFJ. Level of Evidence Level III, retrospective comparative study.


2014 ◽  
Vol 23 (12) ◽  
pp. 3729-3735 ◽  
Author(s):  
Erhan Basad ◽  
Fabian R. Wissing ◽  
Patrick Fehrenbach ◽  
Markus Rickert ◽  
Jürgen Steinmeyer ◽  
...  

2019 ◽  
Vol 47 (13) ◽  
pp. 3212-3220 ◽  
Author(s):  
Takahiro Ogura ◽  
Tim Bryant ◽  
Gergo Merkely ◽  
Brian A. Mosier ◽  
Tom Minas

Background: Autologous chondrocyte implantation (ACI) provides a successful outcome for treating articular cartilage lesions. However, there have been very few reports on the clinical outcomes of revision ACI for failed ACI. Purpose: To evaluate clinical outcomes in patients who underwent revision ACI of the knee for failure of an initial ACI and to determine the factors affecting the survival rate. Study Design: Case series; Level of evidence, 4. Methods: A review of a prospectively collected data set was performed from patients who underwent revision ACI of the knee for failure of an initial ACI between 1995 and 2014 by a single surgeon. The authors evaluated 53 patients (53 knees; mean age, 38 years) over a mean 11.2-year follow-up (range, 2-20). A total of 62 cartilage lesions were treated for failed graft lesions after an initial ACI, and 31 new cartilage lesions were treated at revision ACI, as there was progression of disease. Overall, 93 cartilage lesions (mean, 1.8 lesions per knee) with a total surface area of 7.4 cm2 (range, 2.5-18 cm2) per knee were treated at revision ACI. Survival analysis was performed with the Kaplan-Meier method, with ACI graft failure or conversion to a prosthetic arthroplasty as the endpoint. The modified Cincinnati Knee Rating Scale, Western Ontario and McMaster Universities Osteoarthritis Index, visual analog scale, and 36-Item Short Form Health Survey were used to evaluate clinical outcomes. Patients also self-reported knee function and satisfaction. Standard radiographs were evaluated with Kellgren-Lawrence grades. Results: Survival rates were 71% and 53% at 5 and 10 years, respectively. Survival subanalysis revealed a trend that patients without previous cartilage repair procedures before an initial ACI had better survival rates than those with such procedures (81% vs 62% at 5 years, 64% vs 42% at 10 years, P = .0958). Patients with retained grafts showed significant improvement in pain and function, with a high level of satisfaction. At a mean 5.1 years postoperatively, 18 of 27 successful knees were radiographically assessed with no significant osteoarthritis progression. Outcomes for 26 patients were considered failures (mean, 4.9 years postoperatively), in which 15 patients had prosthetic arthroplasty (mean, 4.6 years) and the other 11 patients had revision cartilage repair (mean, 5.4 years) and thus could maintain their native knees. Conclusion: Results of revision ACI for patients who failed ACI showed acceptable clinical outcomes. Revision ACI may be an option for young patients after failed initial ACI, particularly patients without previous cartilage repair procedures and those who desire to maintain their native knees.


2017 ◽  
Vol 46 (4) ◽  
pp. 995-999 ◽  
Author(s):  
Matthew J. Kraeutler ◽  
John W. Belk ◽  
Justin M. Purcell ◽  
Eric C. McCarty

Background: Microfracture (MFx) and autologous chondrocyte implantation (ACI) are 2 surgical treatment options used to treat articular cartilage injuries of the knee joint. Purpose: To compare the midterm to long-term clinical outcomes of MFx versus ACI for focal chondral defects of the knee. Study Design: Systematic review. Methods: A systematic review was performed by searching PubMed, the Cochrane Library, and Embase to locate studies (level of evidence I-III) comparing the minimum average 5-year clinical outcomes of patients undergoing MFx versus ACI. Search terms used were “knee,” “microfracture,” “autologous chondrocyte implantation,” and “autologous chondrocyte transplantation.” Patients were evaluated based on treatment failure rates, magnetic resonance imaging, and patient-reported outcome scores (Lysholm, Knee Injury and Osteoarthritis Outcome Score [KOOS], and Tegner scores). Results: Five studies (3 level I evidence, 2 level II evidence) were identified that met the inclusion criteria, including a total of 210 patients (211 lesions) undergoing MFx and 189 patients (189 lesions) undergoing ACI. The average follow-up among all studies was 7.0 years. Four studies utilized first-generation, periosteum-based ACI (P-ACI), and 1 study utilized third-generation, matrix-associated ACI (M-ACI). Treatment failure occurred in 18.5% of patients undergoing ACI and 17.1% of patients undergoing MFx ( P = .70). Lysholm and KOOS scores were found to improve for both groups across studies, without a significant difference in improvement between the groups. The only significant difference in patient-reported outcome scores was found in the 1 study using M-ACI in which Tegner scores improved to a significantly greater extent in the ACI group compared with the MFx group ( P = .003). Conclusion: Patients undergoing MFx or first/third-generation ACI for articular cartilage lesions in the knee can be expected to experience improvement in clinical outcomes at midterm to long-term follow-up without any significant difference between the groups.


2003 ◽  
Vol 12 (2) ◽  
pp. 104-118 ◽  
Author(s):  
Andrea Bailey ◽  
Nicola Goodstone ◽  
Sharon Roberts ◽  
Jane Hughes ◽  
Simon Roberts ◽  
...  

Objective:To develop a postoperative rehabilitation protocol for patients receiving autologous-chondrocyte implantation (ACI) to repair articular-cartilage defects of the knee.Data Sources:careful review of both basic science and clinical literature, personal communication with colleagues dealing with similar cases, and the authors’ experience and expertise in rehabilitating numerous patients with knee pathologies, injuries, and trauma.Data Synthesis:Postoperative rehabilitation of the ACI patient plays a critical role in the outcome of the procedure. The goals are to improve function and reduce discomfort by focusing on 3 key elements: weight bearing, range of motion, and strengthening.Conclusions:The authors present 2 flexible postoperative protocols to rehabilitate patients after an ACI procedure to the knee.


Sign in / Sign up

Export Citation Format

Share Document