Using target costing concept in loss function and process capability indices to set up goal control limits

Author(s):  
Hsin-Hung Wu
2020 ◽  
Author(s):  
Alexis Oliva ◽  
Matías Llabrés

Different control charts in combination with the process capability indices, Cp, Cpm and Cpk, as part of the control strategy, were evaluated, since both are key elements in determining whether the method or process is reliable for its purpose. All these aspects were analyzed using real data from unitary processes and analytical methods. The traditional x-chart and moving range chart confirmed both analytical method and process are in control and stable and therefore, the process capability indices can be computed. We applied different criteria to establish the specification limits (i.e., analyst/customer requirements) for fixed method or process performance (i.e., process or method requirements). The unitary process does not satisfy the minimum capability requirements for Cp and Cpk indices when the specification limit and control limits are equal in breath. Therefore, the process needs to be revised; especially, a greater control in the process variation is necessary. For the analytical method, the Cpm and Cpk indices were computed. The obtained results were similar in both cases. For example, if the specification limits are set at ±3% of the target value, the method is considered “satisfactory” (1.22<Cpm<1.50) and no further stringent precision control is required.


2017 ◽  
Vol 24 (2) ◽  
pp. 384-402 ◽  
Author(s):  
Arash Geramian ◽  
Arash Shahin ◽  
Sara Bandarrigian ◽  
Yaser Shojaie

Purpose Average quadratic quality loss function (QQLF) measures quality of a given process using mean shift from its target value and variance. While it has a target parameter for the mean, it lacks a target for the variance revisable for counting any progress of the process across different quality levels, above/below the standard level; thus, it appears too general. Hence, in this research, it was initially supposed that all processes are located at two possible quality spaces, above/below the standard level. The purpose of this paper is to propose a two-criterion QQLF, in which each criterion is specifically proper to one of the quality spaces. Design/methodology/approach Since 1.33 is a literarily standard or satisfactory value for two most important process capability indices Cp and Cpk, its upper/lower spaces are assumed as high-/low-quality spaces. Then the indices are integrated into traditional QQLF, of type nominal the best (NTB), to develop a two-criterion QQLF, in which each criterion is more suitable for each quality space. These two criteria have also been innovatively embedded in the plan-do-check-act (PDCA) cycle to help continuous improvement. Finally, the proposed function has been examined in comparison with the traditional one in Feiz Hospital in the province of Isfahan, Iran. Findings Results indicate that the internal process of the studied case is placed on the lower quality space. So the first criterion of revised QQLF gives a more relevant evaluation for that process, compared with the traditional function. Moreover, this study has embedded both proposed criteria in the PDCA cycle as well. Research limitations/implications Formulating the two-criterion QQLF only for observations of normal and symmetric distributions, and offering it solely for NTB characteristics are limitations of this study. Practical implications Two more relevant quality loss criteria have been formulated for each process (service or manufacturing). However, in order to show the comprehensiveness of the proposed method even in service institutes, emergency function of Feiz Hospital has been examined. Originality/value The traditional loss function of type NTB merely and implicitly targets zero defect for variance. In fact, it calculates quality loss of all processes placed on different quality spaces using a same measure. This study, however, provides a practitioner with opportunity of targeting excellent or satisfactory targets.


2015 ◽  
Vol 33 (1) ◽  
pp. 42-61 ◽  
Author(s):  
Jeh-Nan Pan ◽  
Chung-I Li ◽  
Wei-Chen Shih

Purpose – In the past few years, several capability indices have been developed for evaluating the performance of multivariate manufacturing processes under the normality assumption. However, this assumption may not be true in most practical situations. Thus, the purpose of this paper is to develop new capability indices for evaluating the performance of multivariate processes subject to non-normal distributions. Design/methodology/approach – In this paper, the authors propose three non-normal multivariate process capability indices (MPCIs) RNMC p , RNMC pm and RNMC pu by relieving the normality assumption. Using the two normal MPCIs proposed by Pan and Lee, a weighted standard deviation method (WSD) is used to modify the NMC p and NMC pm indices for the-nominal-the-best case. Then the WSD method is applied to modify the multivariate ND index established by Niverthi and Dey for the-smaller-the-better case. Findings – A simulation study compares the performance of the various multivariate indices. Simulation results show that the actual non-conforming rates can be correctly reflected by the proposed capability indices. The numerical example further demonstrates that the actual quality performance of a non-normal multivariate process can properly reflected by the proposed capability indices. Practical implications – Process capability index is an important SPC tool for measuring the process performance. If the non-normal process data are mistreated as a normal one, it will result in an improper decision and thereby lead to an unnecessary quality loss. The new indices can provide practicing managers and engineers with a better decision-making tool for correctly measuring the performance for any multivariate process or environmental system. Originality/value – Once the existing multivariate quality/environmental problems and their Key Performance Indicators are identified, one may apply the new capability indices to evaluate the performance of various multivariate processes subject to non-normal distributions.


2002 ◽  
Vol 27 (1) ◽  
pp. 55-68
Author(s):  
Satish Y Deodhar ◽  
Devanath Tirupati

Indian Food Specialties Limited (IFS) introduced tools of food quality management in May 2000 in response to changing market conditions and poor profitability. Spoilage in the production process was very high and the company had incurred losses for three successive years starting from 1996-97. The company addressed quality concerns by introducing management tools such as quality control charts and process capability indices, and was considering implementation of a food safety system called Hazard Analysis and Critical Control Points (HACCP). The case describes the changing market conditions and the company's response to improving quality, and provides a learning exercise on quality control charts, process capability indices, and HACCP.


Sign in / Sign up

Export Citation Format

Share Document