Optimization of assembly tolerance variation and manufacturing system efficiency by using genetic algorithm in batch selective assembly

2011 ◽  
Vol 55 (9-12) ◽  
pp. 1193-1208 ◽  
Author(s):  
M. Victor Raj ◽  
S. Saravana Sankar ◽  
S. G. Ponnambalam
2018 ◽  
Vol 11 (2) ◽  
pp. 254-268 ◽  
Author(s):  
Yanfeng Xing ◽  
Yansong Wang

PurposeDimensional quality of sheet metal assemblies is an important factor for the final product. However, the part tolerance is not easily controlled because of the spring back deformation during the stamping process. Selective assembly is a means to decrease assembly tolerance of the assembly from low-precision components. Therefore, the purpose of this paper is to propose a fully efficient method of selective assembly optimization based on an improved genetic algorithm for optimization toolbox (IGAOT) in MATLAB.Design/methodology/approachThe method of influence coefficient is first applied to calculate the assembly variation of sheet metal components since the traditional rigid assembly variation model cannot be used due to welding deformation. Afterwards, the IGAOT is proposed to generate optimal selective groups, which consists of advantages of genetic algorithm for optimization toolbox (GAOT) and simulated annealing.FindingsThe cases of two simple planes and the tail lamp bracket assembly are used to illustrate the flowchart of optimizing combinations of selective groups. These cases prove that the proposed IGAOT has better precision than that of GAOT with the same parameters for selective assembly.Originality/valueThe research objective of this paper is to evaluate the changes from rigid bodies to sheet metal parts which are very complex for selective assembly. The method of IGAOT was proposed to the selected groups which has better precision than that of current optimization algorithms.


Author(s):  
Xuyang Chu ◽  
Huihuang Xu ◽  
Xiaomin Wu ◽  
Jiping Tao ◽  
Guifang Shao

As a precision gear reducer, the RV reducer has a low-transmission backlash (very high assembly accuracy). Therefore, the selective assembly method is the only assembly method which can guarantee the assembly precision of the RV reducer. However, the RV reducer has a complex structure; it consists of a high number of parts whose machining tolerance cannot be very low. Furthermore, there are numerous parts, the tolerances of which influence the RV reducer transmission backlash. Therefore, it is difficult to achieve high assembly accuracy by using the traditional selective assembly method. In this paper, a method of selective assembly is proposed to make the backlash of the RV reducer meet the requirements through the analysis of the characteristics of the RV reducer structure, the processing and assembly process of the parts, and the influence of manufacturing errors on the backlash. Then, a mathematical model was established for the RV reducer assembly issue. And a matching algorithm based on a genetic algorithm was developed. Finally, the algorithm was applied to the selective assembly of the RV reducer for verifying the feasibility and validity of the proposed matching method.


2006 ◽  
Vol 128 (4) ◽  
pp. 984-995 ◽  
Author(s):  
Hegui Ye ◽  
Ming Liang

Modular product design can facilitate the diversification of product variety at a low cost. Reconfigurable manufacturing, if planned properly, is able to deliver high productivity and quick responsiveness to market changes. Together, the two could provide an unprecedented competitive edge to a manufacturing company. The production of a family of modular products in a reconfigurable manufacturing system often requires reorganizing the manufacturing system in such a way that each configuration corresponds to one product variant in the same family. The successful implementation of this strategy lies in proper scheduling of the modular product operations and optimal selection of a configuration for producing each product variant. These two issues are closely related and have a strong impact on each other. Nevertheless, they have often been treated separately, rendering inefficient, infeasible, and conflicting decisions. As such, an integrated model is developed to address the two problems simultaneously. The objective is to minimize the sum of the manufacturing cost components that are affected by the two planning decisions. These include reconfiguration cost, machine idle cost, material handling cost, and work-in-process cost incurred in producing a batch of product variants. Due to the combinatorial nature of the problem, a genetic algorithm (GA) is proposed to provide quick and near-optimal solutions. A case study is conducted using a steering column to illustrate the application of the integrated approach. Our computational experience shows that the proposed GA substantially outperforms a popular optimization software package, LINGO, in terms of both solution quality and computing efficiency.


Sign in / Sign up

Export Citation Format

Share Document