assembly accuracy
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 37)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Guoping Zheng ◽  
Jurij Karlovsek

Universal tapered segmental ring system has been adopted to assemble tangent and curve line elements into the shield tunnels through the relative rotation of the adjacent front and rear rings, which simplifies the formwork design, demonstrates strong universality, and is easy for quality assurance. To evaluate the position deviation caused by the taper value and propose the assembly scheme for the contractor, this article developed the universal tapered segmental ring assembly simulation technology. Firstly, the assembly procedure of the universal tapered segmental ring system both in normal case and in special case is introduced, including the interval tunnel of special rings and actual engineering that needs deviation correction. Secondly, relevant core algorithms are introduced in detail, including the coordinate position algorithm of horizontal and vertical curves and computer graphic algorithm of spatial point rotating around any axis. Finally, this article takes a background metro line tunnel as a case to validate the algorithm and illustrate the assessment methodology of universal tapered segmental ring assembly accuracy. The sections with maximum deviation are found as an alert ahead of the shield advancing. In conclusion, the algorithms and methodology proposed in this article illustrate the excellent suitability and robustness in shield tunnels adopting a universal tapered segmental ring system in the stage of both design and construction.


Author(s):  
Xiaokai Mu ◽  
Bo Yuan ◽  
Yunlong Wang ◽  
Wei Sun ◽  
Chong Liu ◽  
...  

The manufacturing/assembly error of machine parts is a key factor that influences the performance and economy of mechanical systems. To achieve high assembly precision and performance on the basis of low manufacturing accuracy and cost, this study primarily optimizes the assembly error of machine parts. First, the small displacement torsor is used to characterize the small deformation between the mating surfaces of parts. Subsequently, to realize the combination of small displacement torsor and tolerance, the small displacement torsor with manufacturing error and assembly deformation is mapped to the tolerance domain. Second, based on the relationship between small displacement torsor and tolerance, an assembly error optimization model is established on the basis of the conventional tolerance-cost model, considering the emergence of manufacturing error and assembly deformation. Third, aiming at the high-pressure rotor for aeroengines, the error optimization design of assembly is carried out developed with the assembly accuracy requirement as the constraint condition, and the total costs of the manufacturing and assembly processes as the objective. The optimization results indicate that the manufacturing error range of each mating surface after optimization changes, from small to large, under the premise of ensuring the product’s performance, which verifies that the difficulty in processing parts is reduced, and that the efficiency of parts processing is also improved. Meanwhile, the relative manufacturing cost after optimization is reduced by 6.79%, which reflects the economic requirements to a certain extent. The content of this article provides the necessary design basis and reference for the realization of high assembly accuracy of mechanical systems, under low cost requirements from the design perspective.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032005
Author(s):  
M Kovalevich ◽  
T Neypert ◽  
P Davydov

Abstract The article is devoted to the assessment of assembly accuracy when positioning with the use of industrial manipulators (robots). Classic assembly technologies are outdated and have many disadvantages that can be solved by the automation of industrial processes, which became possible due to the rapid development of robotization. In the material there are investigation the possibility of using industrial robots for positioning structural elements of aircraft from the point of view of achieving the required assembly accuracy. For the analysis, foreign literature sources and the current experience of introducing similar technologies by large aircraft manufacturers were used. To assess the assembly accuracy, the formulas for the functional size error were used. An enlarged technological assembly process is presented, graphic materials with basing schemes are presented. Based on the data obtained, the advantages and disadvantages of basing with the help of industrial robots at this stage of technology development are formulated, taking into account the existing production experience.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012070
Author(s):  
Yuan Gao

Abstract At present, with the increasing requirements of major enterprises on assembly accuracy, the problem of interference and excessive clearance between parts needs to be solved. In order to analyze and optimize the tolerances in the actual assembly of the parts, a three-dimensional vector ring model is proposed on the basis of the dimensional chain model, and the tolerance distribution is optimized by the “dichotomy method”. With the help of 3DCS, the virtual assembly of the automobile headlight is carried out, and the sensitivity analysis is carried out by establishing the measurement of the gap between the turn signal and headlight in the automobile headlight, and the simulation results are used to obtain a reasonable improvement in tolerance allocation that meets the design criteria and saves costs. The results are compared with the traditional method of optimizing the allocation of equal tolerances and are clearly superior, providing a method for optimizing the allocation of tolerances to parts in engineering practice.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7660
Author(s):  
Shih-Ming Wang ◽  
Ren-Qi Tu ◽  
Hariyanto Gunawan

This study proposed an error-matching measurement and compensation method for curve mating and complex mating. With use of polynomial curve fitting and least squares methods for error analysis, an algorithm for error identification and error compensation were proposed. Furthermore, based on the proposed method, an online error-matching compensation system with an autorevising function module for autogenerating an error-compensated NC program for machining was built. Experimental verification results showed that the proposed method can effectively improve the accuracy of assembly matching. In a curve-type mating experiment, the matching error without compensation was 0.116 mm, and it decreased to 0.048 mm after compensation. The assembly accuracy was improved by 28%. In a complex-type mating experiment, the verification results showed that the error reductions after compensation for three mating shapes (straight line, triangle, and curve shape) were 81%, 87%, and 79%, respectively. It showed that the proposed method can improve the assembly accuracy for complex mating shapes, which would also be improved without losing production efficiency.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Md Helal Miah ◽  
Jianhua Zhang ◽  
Dharmahinder Singh Chand

Purpose This paper aims to illustrate the tolerance optimization method based on the assembly accuracy constrain, precession constrain and the cost of production of the assembly product. Design/methodology/approach A tolerance optimization method is an excellent way to perform product assembly performance. The tolerance optimization method is adapted to the process analysis of the hatch and skin of an aircraft. In this paper, the tolerance optimization techniques are applied to the tolerance allocation for step difference analysis (example: step difference between aircraft cabin door and fuselage outer skin). First, a mathematical model is described to understand the relationship between manufacturing cost and tolerance cost. Second, the penalty function method is applied to form a new equation for tolerance optimization. Finally, MATLAB software is used to calculate 170 loops iteration to understand the efficiency of the new equation for tolerance optimization. Findings The tolerance optimization method is based on the assembly accuracy constrain, machinery constrain and the cost of production of the assembly product. The main finding of this paper is the lowest assembly and lowest production costs that met the product tolerance specification. Research limitations/implications This paper illustrated an efficient method of tolerance allocation for products assembly. After 170 loops iterations, it founds that the results very close to the original required tolerance. But it can easily say that the different number of loops iterations may have a different result. But optimization result must be approximate to the original tolerance requirements. Practical implications It is evident from Table 4 that the tolerance of the closed loop is 1.3999 after the tolerance distribution is completed, which is less than and very close to the original tolerance of 1.40; the machining precision constraint of the outer skin of the cabin door and the fuselage is satisfied, and the assembly precision constraint of the closed loop is satisfied. Originality/value The research may support further research studies to minimize cost tolerance allocation using tolerance cost optimization techniques, which must meet the given constrain accuracy for assembly products.


2021 ◽  
Author(s):  
Georgia L Breckell ◽  
Olin K Silander

Long read sequencing technologies now allow routine highly contiguous assembly of bacterial genomes. However, because of the lower accuracy of some long read data, it is often combined with short read data (e.g. Illumina), to improve assembly quality. There are a number of methods available for producing such hybrid assemblies. Here we use Illumina and Oxford Nanopore (ONT) data from 49 natural isolates of Escherichia coli to characterise differences in assembly accuracy for five assembly methods (Canu, Unicycler, Raven, Flye, and Redbean). We evaluate assembly accuracy using five metrics designed to measure structural accuracy and sequence accuracy (indel and substitution frequency). We assess structural accuracy by quantifying (1) the contiguity of chromosomes and plasmids; (2) the fraction of concordantly mapped Illumina reads withheld from the assembly; and (3) whether rRNA operons are correctly oriented. We assess indel and substitution frequency by quantifying (1) the fraction of open reading frames that appear truncated and (2) the number of variants that are called using Illumina reads only. Applying these assembly metrics to a large number of E. coli strains, we find that different assembly methods offer different advantages. In particular, we find that Unicycler assemblies have the highest sequence accuracy in non-repetitive regions, while Flye and Raven tend to be the most structurally accurate. In addition, we find that there are unidentified strain-specific characteristics that affect ONT consensus accuracy, despite individual reads having similar levels of accuracy. The differences in consensus accuracy of the ONT reads can preclude accurate assembly regardless of assembly method. These results provide quantitative insight into the best approaches for hybrid assembly of bacterial genomes and the expected levels of structural and sequence accuracy. They also show that there are intrinsic idiosyncratic strain-level differences that inhibit accurate long read bacterial genome assembly. However, we also show it is possible to diagnose problematic assemblies, even in the absence of ground truth, by comparing long-read first and short-read first assemblies.


2021 ◽  
Author(s):  
Shuqing Chen ◽  
Tiemin Li ◽  
Yao Jiang

Abstract To assemble spacecraft automatically and precisely, it is vital to measure the relative spatial pose (position and orientation) of the assembly features of the spacecraft components before assembly. For large-scale spacecraft components, the global measurement method is mainly utilized to guide assembly control, and its accuracy and efficiency have ultimately failed to meet requirements. To address this issue, a novel measurement method is proposed. Since the goal is to measure the relative spatial pose of the assembly features of the spacecraft components, the proposed method measures it directly to ensure the consistency of the measurement and assembly coordinate system. This method has the advantage of high precision because it can reduce the influence of structural parameter errors and is not limited by the scale of the spacecraft components. In addition, it requires only one offline calibration, which significantly improves the efficiency of online measurement and assembly. Taking the control moment gyroscope (CMG) assembly task as an example, a measurement system and its corresponding calibration device are designed and developed. After calibration by the calibration device, the measurement system is mounted on the assembly features of the CMG to measure the relative spatial pose between the assembly features of the CMG and the assembly features of the mounted base (MB). Finally, six assembly experiments are completed according to the measurement results. The experimental results show that this method has high accuracy and can guide the robot to achieve high assembly accuracy, satisfying the assembly requirements of typical spacecraft components.


2021 ◽  
Author(s):  
Andrej Czán ◽  
Richard Joch ◽  
Michal Šajgalík ◽  
Jozef Holubjak ◽  
Andrej Horák ◽  
...  

Abstract Forced rotation turning appears to be an effective machining method due to higher tool life, time efficiency and acceptable quality. Several studies have been carried out to investigate the basic characteristics of forced rotation machining. So far, tools are used whose design included several components. However, such tools may generate vibrations, which are undesirable in the process. In engineering practice, most vibration problems are solved by reducing the cutting parameters (cutting speed and feed rate), which reduces machining productivity. For this reason, a new type of monolithic rotary tool has been designed that eliminates the design complexity and high assembly accuracy requirements of current rotary tools. The presented solution fundamentally validates the new monolithic tool for forced rotation technology and defines its application for different machining materials.


Sign in / Sign up

Export Citation Format

Share Document