Optimal five-axis tool path generation algorithm based on double scalar fields for freeform surfaces

2015 ◽  
Vol 83 (9-12) ◽  
pp. 1503-1514 ◽  
Author(s):  
Ke Zhang ◽  
Kai Tang
2021 ◽  
Author(s):  
Tianji Xing ◽  
Xuesen Zhao ◽  
Zhipeng Cui ◽  
Rongkai Tan ◽  
Tao Sun

Abstract The improvement of ultra-precision machining technology has significantly boosted the demand for the surface quality and surface accuracy of the workpieces to be machined. However, the geometric shapes of workpiece surfaces cannot be adequately manufactured with simple plane, cylindrical, or spherical surfaces because of their different applications in various fields. In this research, a method was proposed to generate tool paths for the machining of complex spherical surfaces based on an ultra-precise five-axis turning and milling machine with a C-Y-Z-X-B structure. Through the proposed tool path generation method, ultra-precise complex spherical surface machining was achieved. First, the complex spherical surface model was modeled and calculated, and then it was combined with the designed model to generate the tool path. Then the tool paths were generated with a numerically controlled (NC) program. Based on an ultra-precision three-coordinate measuring instrument and a white light interferometer, the machining accuracy of a workpiece surface was characterized, and t[1]he effectiveness of the provided tool path generation method was verified. The surface roughness of the machined workpiece was less than 90 nm. Furthermore, the surface roughness within the spherical region appeared to be less than 30 nm. The presented tool path generation method in this research produced ultra-precision spherical complex surfaces. The method could be applied to complex spherical surfaces with other characteristics.


Author(s):  
K. Nakamoto ◽  
K. Shirase ◽  
A. Morishita ◽  
E. Arai ◽  
T. Moriwaki

Author(s):  
David Manuel Ochoa González ◽  
Joao Carlos Espindola Ferreira

Traditional (direction-parallel and contour-parallel) and non-traditional (trochoidal) tool paths are generated by specialized geometric algorithms based on the pocket shape and various parameters. However, the tool paths generated with those methods do not usually consider the required machining power. In this work, a method for generating power-aware tool paths is presented, which uses the power consumption estimation for the calculation of the tool path. A virtual milling system was developed to integrate with the tool path generation algorithm in order to obtain tool paths with precise power requirement control. The virtual milling system and the tests used to calibrate it are described within this article, as well as the proposed tool path generation algorithm. Results from machining a test pocket are presented, including the real and the estimated power requirements. Those results were compared with a contour-parallel tool path strategy, which has a shorter machining time but has higher in-process power consumption.


Sign in / Sign up

Export Citation Format

Share Document