Use of a virtual milling system to generate power-aware tool paths for 2.5-dimensional pocket machining

Author(s):  
David Manuel Ochoa González ◽  
Joao Carlos Espindola Ferreira

Traditional (direction-parallel and contour-parallel) and non-traditional (trochoidal) tool paths are generated by specialized geometric algorithms based on the pocket shape and various parameters. However, the tool paths generated with those methods do not usually consider the required machining power. In this work, a method for generating power-aware tool paths is presented, which uses the power consumption estimation for the calculation of the tool path. A virtual milling system was developed to integrate with the tool path generation algorithm in order to obtain tool paths with precise power requirement control. The virtual milling system and the tests used to calibrate it are described within this article, as well as the proposed tool path generation algorithm. Results from machining a test pocket are presented, including the real and the estimated power requirements. Those results were compared with a contour-parallel tool path strategy, which has a shorter machining time but has higher in-process power consumption.

2010 ◽  
Vol 43 ◽  
pp. 484-487
Author(s):  
Wei Liu ◽  
Lai Shui Zhou ◽  
Lu Ling An

This paper presents an algorithm through which 3-axis NC rough tool-paths can be directly generated from discrete data points. Based on Inverse Tool Offset (ITO) method, the algorithm generates direction-parallel (DP) tool paths for relief point clouds. The algorithm includes four steps: dividing data points into 3D cell grids; constructing inverse tool model and calculating the grids intersecting the surface of inverse tool; obtaining the grids containing cutter location points; calculating tool paths. The experiment results indicate that the algorithm of the rough tool paths is efficient.


2019 ◽  
Vol 18 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Mochammad Chaeron ◽  
Budi Saputro Wahyuaji ◽  
Apriani Soepardi

The machining strategy is one of the parameters which practically influences the time of the different manufacturing geometric forms. The machining time directly relates to the machining efficiency of the tool paths. In area milling machining, there are two main types of tool path strategies: a direction-parallel milling and contour-parallel milling. Then direction-parallel milling is simple compared with a contour-parallel strategy. This paper proposes a new model of the direction-parallel machining strategy for triangular pockets to reduce the tool path length. The authors develop an analytical model by appending additional the tool path segments to the basis tool path for cutting un-machined area or scallops, which remained along the boundary. To validate its results, the researchers have compared them to the existing model found in the literature. For illustrating the computation of this model, the study includes two numerical examples. The results show that the proposed analytic direction-parallel model can reduce the total length of machining. Thus, it can take a shorter time for milling machining.


1993 ◽  
Vol 115 (4) ◽  
pp. 480-486 ◽  
Author(s):  
Y. D. Chen ◽  
J. Ni ◽  
S. M. Wu

A real-time CNC tool path generation algorithm has been developed for machining IGES surfaces. IGES-based CAD data files can be directly inputted to the CNC system and the tool paths generated in real time can be passed to a motion controller during cutting via a Multibuss II backplane structure. The development of such a real-time tool path generation method has eliminated the need for a tradeoff between the desired surface accuracy and the required memory size for storing off-line generated NC codes. The real-time NC path generation algorithm can properly deal with issues such as trimming lines, gouging detection, and adaptive tool step adjustment. The developed algorithm has been implemented on a multi-processor CNC system and verified through actual cutting tests. The test results show that no violating conditions occurred on machined part surfaces, and the surface contour error of the cut part is less than the given tolerance, which was 0.02 mm in this particular test.


2013 ◽  
Vol 567 ◽  
pp. 59-65
Author(s):  
Song Lin Ding ◽  
John P.T. Mo ◽  
Daniel Yang

This paper presents a new tool path generation strategy for rough machining based on the dynamic in-process stock model of the workpiece. Compared to conventional roughing method, the new tool paths result in a better surface finish but consume the same machining time. The cutter locations in the tool path are determined by removing the peak portion of the residual materials on the stock. The geometric information of remaining stocks is updated dynamically in the in-process model once each cutting pass is completed. The overall machining time is no longer than the conventional method since no additional tool paths are added. The proposed method was implemented in Catia and has been validated by simulation and cutting tests with flat end and ball nose cutters on a 3-axis CNC milling machine.


2021 ◽  
Author(s):  
Tianji Xing ◽  
Xuesen Zhao ◽  
Zhipeng Cui ◽  
Rongkai Tan ◽  
Tao Sun

Abstract The improvement of ultra-precision machining technology has significantly boosted the demand for the surface quality and surface accuracy of the workpieces to be machined. However, the geometric shapes of workpiece surfaces cannot be adequately manufactured with simple plane, cylindrical, or spherical surfaces because of their different applications in various fields. In this research, a method was proposed to generate tool paths for the machining of complex spherical surfaces based on an ultra-precise five-axis turning and milling machine with a C-Y-Z-X-B structure. Through the proposed tool path generation method, ultra-precise complex spherical surface machining was achieved. First, the complex spherical surface model was modeled and calculated, and then it was combined with the designed model to generate the tool path. Then the tool paths were generated with a numerically controlled (NC) program. Based on an ultra-precision three-coordinate measuring instrument and a white light interferometer, the machining accuracy of a workpiece surface was characterized, and t[1]he effectiveness of the provided tool path generation method was verified. The surface roughness of the machined workpiece was less than 90 nm. Furthermore, the surface roughness within the spherical region appeared to be less than 30 nm. The presented tool path generation method in this research produced ultra-precision spherical complex surfaces. The method could be applied to complex spherical surfaces with other characteristics.


Author(s):  
Hong-Zhou Fan ◽  
Shang-Jin Wang ◽  
Guang Xi ◽  
Yan-Long Cao

The centrifugal impeller with arbitrary surface blades is a very important component in automobile, ships, and aircraft industry, and it is one of the most difficult parts to process. Focusing on the machining efficiency improvement, combining the geometric advantages of ruled surface and arbitrary surface, and utilizing the efficient and accurate advantages of flank machining and point machining, this article presents a novel and targeted tool-path generation method and algorithm for five-axis flank machining of centrifugal impeller with arbitrary surface blades. In light of specific characters of different surfaces, the analyses of two different impeller blades are proposed first, the more characteristic and complex geometrical structures of the arbitrary blade are achieved. In rough machining, an approximate ruled surface blade is obtained, and a simple channel is achieved; the flank milling of the centrifugal impeller with ruled surface blades is achieved relative to the point milling of the centrifugal impeller with arbitrary surface blades; and the triangle tool path planning method is added in this process to save the machining time and cost collectively. Furthermore, in semi-finish machining, the approximate sub-ruled blade surfaces are calculated, and a new flank milling method of the sub-ruled blade surfaces is achieved; a new solution for tool interference is achieved in this process and the generation of non-interference tool paths becomes easy. Machining experiments of two different impellers are presented as a test of the proposed methods.


2015 ◽  
Vol 639 ◽  
pp. 517-524 ◽  
Author(s):  
Reginald Dewil ◽  
Pieter Vansteenwegen ◽  
Dirk Cattrysse

This paper deals with non-trivial problem aspects of laser cutting tool path generation that, to the best of our knowledge, received relatively little attention in the scientific literature. It is shown that some aspects such as plate edge nesting, skeleton and remnant cutting, and clamp positioning can be modeled and solved with little additional effort using existing tool path algorithms. However, concepts such as collision avoidance, pre-cut optimization, and bridge utilization prove to be more challenging and will require more profound algorithmic adjustments if these have to be taken into account fully. An even harder problem aspect is generating tool paths that are thermally feasible. Since laser cutting introduces net heat into the metal sheet, the metal sheet tends to heat up as the cutting progresses. Quality deterioration can occur if the laser spends too much time cutting in the same region. It is shown how to model the easy problem extensions in order to handle them using existing problem approaches and solution approaches are suggested to tackle the harder concepts. In addition, a proof of concept is presented that shows that thermal feasible tool paths can be generated through a multi-start heuristic utilizing a thermal penalty function. A finite difference method iteratively (or concurrently dependent on the used heuristic) evaluates the thermal feasibility and updates the penalty function.


Sign in / Sign up

Export Citation Format

Share Document