Experimental and numerical investigation on thin sheet metal roll forming process of micro channels with high aspect ratio

2018 ◽  
Vol 100 (1-4) ◽  
pp. 117-129 ◽  
Author(s):  
Jihui Huang ◽  
Yujun Deng ◽  
Peiyun Yi ◽  
Linfa Peng
2017 ◽  
Vol 728 ◽  
pp. 66-71
Author(s):  
Aran Blattler ◽  
Maitri Kamonrattanapisud ◽  
Thanasan Intarakumthornchai ◽  
Yingyot Aue-u-Lan

A geometrical base parameter is investigated to determine the effect on a bending quality of a thin sheet metal for a roll forming process. This parameter is usually used as a criterion for the quality control of incoming materials for the bending process. This study was conducted by using a FEM simulation. The determination of the geometrical base parameter is considered as an appropriate and unique characteristic for each type of materials. To find this geometrical base parameter the dimensions of the workpiece must be measured while loading. The sensitivity of the bend allowance of a sheet metal is dependent on this geometrical base parameter. The high geometrical base parameter is led to indicate the elongation and the strength of the material. The principles of the geometrical base parameter are dependent on several factors, such as the bending angle, bending radius, material thickness, bend allowance, bending types and mechanical properties of materials. The outcomes of this study could provide the information used to enhance the bend quality of the sheet metal.


2020 ◽  
Vol 299 ◽  
pp. 351-357
Author(s):  
Sergey A. Tipalin ◽  
Michael A. Petrov ◽  
Yuriy A. Morgunov

During the bending operation of the thin sheet materials by the punch with the near-to-zero radius the special technological operation should be carried out. It means that the metal sheet obtained a certain thinning value, which is usually done in the form of the channel-concentrator or groove by pre-drawing operation in a cold state. It follows to the pre-straining and strengthening of the material. The authors investigated the strain hardened sheet's area after roll forming process theoretically, and obtained the strain-stress distribution inside the sheet during the bending operation. It was found out that the increase of the prior deformation during pre-straining in the bend layer follows to the increase of the radial and tangential stresses and displacement of the neutral axis inside the blank during bending operation. As a result, the bending moment changes its values depends on the punch radius and strain hardening.


2014 ◽  
Vol 15 (6) ◽  
pp. 1069-1074 ◽  
Author(s):  
Jun-Seok Yoon ◽  
So-Eun Son ◽  
Woo-Jin Song ◽  
Jeong Kim ◽  
Beom-Soo Kang

2013 ◽  
Vol 365-366 ◽  
pp. 549-552
Author(s):  
Zhou Sui ◽  
Zhong Yi Cai ◽  
Ming Zhe Li

The continuous flexible roll forming process is a novel sheet metal forming technique for effectively manufacture of three-dimensional surface parts. In this study, two types of finite element (FE) models were developed under the ABAQUS/Explicit environment. The difference of the two models is that the rolls are defined as discrete rigid bodies in model No.1 and are deformable in model No.2. An experiment was carried out using the continuous sheet metal forming setup. The comparison of the numerical computation results with the experimental results shows that the model No.2 can be used for the shape prediction of continuous flexible roll forming process well.


Author(s):  
Tu K. Y. ◽  
Chang H. C. ◽  
Wang H. T. ◽  
Chen P. J. ◽  
Cheng T. J. ◽  
...  

Author(s):  
А. Н. Застела ◽  
В. В. Борисевич

During improvement of the quality of products and reducing its cost, sheet metal stamping production, being the basis for the aerospace industry, should more intensively introduce modern production technologies, especially design. There are a large number of factors influencing the stamping process (especially parts with complex geometry), more comprehensive consideration of which would allow to optimize such processes, thereby reducing the manufacturing cost and improving the  quality. Currently the processes of forming and separation of complex parts by  of an elastic pad are of interest from the point of view of optimization and the final determination of the nature of the behavior of the material. This includes the refinement of such parameters as the maximum permissible thinning, the strength of the die. Clarification of these and other parameters will significantly reduce energy required. Determination of these and other parameters of sheet metal stamping is possible due to application of the modern analysis methods. For numerical studies in the sheet stamping production, the variational method or FEM is the most suitable. Computer modeling makes it possible to investigate the behavior of the material, the kinematics of the workpiece movement during forming process, select the correct loading scheme for the workpiece, and also makes it possible to consider several options for the location of the workpiece in the die, which is very important for  stamping thin sheet metal blanks. It provides a significant reduction of the time and costs for carrying out natural experiments, and decrease of technological preproduction preparation of sheet metal stamping. The development of a mathematical model based on the FEM makes it possible to determine not only the required parameters of the process, but also to consider the forming process during its certain stages, to determine the stress-strain state, indicating at the same time the problem zones of excessive thinning, loss of stability, the need to apply a die with a back pressure for cutting of thin sheet metal blanks. It allows to evaluate the quality of a ready product according to the calculated parameters, to use the results obtained for the design of elastic pad


2017 ◽  
Vol 873 ◽  
pp. 42-47
Author(s):  
Dong Won Jung

These days sheet metal forming is a widely used in different industrial fields with large production volumes. Formability of metal sheets is limited by localized necking and plastic instability. In sheet metal forming processes like drawing and stamping the main challenge is thinning of the metal sheet in some regions. To reduce thinning of the sheet product, roll forming has been suggested instead of stamping process. Thinning strain can cause necking, tearing or wrinkling which are failure of the metal sheet. In this study a new engineering technique is proposed in order to prevent thinning of the steel galvanized hot coil commercial (SGHC) in roll forming process. An explicit finite element code, ABAQUS software, was used to simulate the roll forming process. The results show that the proposed technique has an important effect on thinning of the sheet and can reduce it significantly. Investigation on the second and third and fourth rollers show the effect of modified roller dimension as on reducing the thickness. These reductions in second, third and fourth rollers are from 4 percent to 0.5 percent, 2.8 to 1.4 percent and from 1.4 to 0.7 percent respectively. The reasons of the new techniques effect were also discussed.


Sign in / Sign up

Export Citation Format

Share Document