Theoretical study on frequency spectrum characteristics of surface profiles generated in micro-end-milling process

Author(s):  
Tao Wang ◽  
Xiaoyu Wu ◽  
Guoqing Zhang ◽  
Bin Xu ◽  
Yinghua Chen ◽  
...  
Author(s):  
Xuewei Zhang ◽  
Tianbiao Yu ◽  
Wanshan Wang

An accurate prediction of cutting forces in the micro end milling, which is affected by many factors, is the basis for increasing the machining productivity and selecting optimal cutting parameters. This paper develops a dynamic cutting force model in the micro end milling taking into account tool vibrations and run-out. The influence of tool run-out is integrated with the trochoidal trajectory of tooth and the size effect of cutting edge radius into the static undeformed chip thickness. Meanwhile, the real-time tool vibrations are obtained from differential motion equations with the measured modal parameters, in which the process damping effect is superposed as feedback on the undeformed chip thickness. The proposed dynamic cutting force model has been experimentally validated in the micro end milling process of the Al6061 workpiece. The tool run-out parameters and cutting forces coefficients can be identified on the basis of the measured cutting forces. Compared with the traditional model without tool vibrations and run-out, the predicted and measured cutting forces in the micro end milling process show closer agreement when considering tool vibrations and run-out.


Author(s):  
Dae Hoon Kim ◽  
Pil-Ho Lee ◽  
Jung Sub Kim ◽  
Hyungpil Moon ◽  
Sang Won Lee

This paper investigates the characteristics of micro end-milling process of titanium alloy (Ti-6AL-4V) using nanofluid minimum quantity lubrication (MQL). A series of micro end-milling experiments are conducted in the meso-scale machine tool system, and milling forces, burr formations, surface roughness, and tool wear are observed and analyzed according to varying feed per tooth and lubrication conditions. The experimental results show that MQL and nanofluid MQL with nanodiamond particles can be effective to reduce milling forces, burrs and surface roughness during micro end-milling of titanium alloy. In particular, it is demonstrated that smaller size of nanodiamond particles — 35 nm — can be more effective to decrease burrs and surface roughness in the case of nanofluid MQL micro end-milling.


2004 ◽  
Vol 257-258 ◽  
pp. 453-458 ◽  
Author(s):  
T. Je ◽  
J. Lee ◽  
Doo Sun Choi ◽  
E. Lee ◽  
B. Shin ◽  
...  

2010 ◽  
Vol 97-101 ◽  
pp. 2542-2545 ◽  
Author(s):  
Kai Yang ◽  
Qing Shun Bai ◽  
Ying Chun Liang

The micro-end-milling process of aluminum alloy Al2024-T6 has been investigated by numerical simulations and experimental approach. The effects of different tool edge radii on the micro-cutter wear were investigated. A three-dimensional finite element model is adopted to determine the effects of tool edge radii on the effective stress and micro-cutter wear during the micro-end-milling process. It is observed that the the tool nose wears out much more quickly due to the high maximal effective stress occurring in this zone. The experimental verification of the simulation model is carried out on a micro-end-milling process of aluminum alloy 2024-T6. The experimental results of the micro-cutter morphologies are in a good agreement with the simulation results. The experimental results show that the model is suitable for studying the mechanism of micro-cutter wear.


Sign in / Sign up

Export Citation Format

Share Document