Semi-solid processing combines the advantages of traditional forging and casting methods, so it has received much attention recently. However, the research on semi-solid behaviors of Nickel-based superalloys has been rarely reported. In order to investigate the behaviors of Nickel-based superalloy at solid and semi-solid states, oxidation experiments, isothermal treatment experiments and deformation experiments of GH4037 alloy were studied. Short-term oxidation experiments of GH4037 alloy were carried out at a solid temperature (1200 °C) and a semi-solid temperature (1360 °C). The results indicated that the oxides formed at 1200 °C were mainly composed of TiO2, Cr2O3 and a small amount of spinels NiCr2O4, while the oxides formed at 1360 °C consisted of the spinels of NiCr2O4, NiWO4 and NiMoO4 besides TiO2 and Cr2O3. Microstructure evolution of GH4037 alloy after semi-solid isothermal treatment at 1370 °C and 1380 °C was studied. The results indicated that semi-solid microstructures consisted of equiaxed solid grains and liquid phases. The average grains size and shape factor of solid grains were affected by melting mechanism and grain growth mechanism. Compression behaviors of GH4037 alloy after compressed at 1200 °C and 1360 °C were investigated. The results indicated that the flow stress of 1360 °C decreased significantly compared to that of 1200 °C. The deformation zones in the specimens were divided into three parts: the difficult deformation zone, the large deformation zone, and the free deformation zone. At 1200 °C, the deformation mechanism was plastic deformation mechanism. At 1360 °C, sliding between solid particles (SS), liquid flow (LF), flow of liquid incorporating solid particles (FLS), plastic deformation of solid particles (PDS) coexisted in the compression specimen.