Collision detection algorithm on abrasive belt grinding blisk based on improved octree segmentation

Author(s):  
Zhi Huang ◽  
Xing Yang ◽  
Jie Min ◽  
Hongyan Wang ◽  
Pengxuan Wei
2021 ◽  
Author(s):  
Zhi Huang ◽  
Xing Yang ◽  
Jie Min ◽  
Hongyan Wang ◽  
Pengxuan Wei

Abstract In the process of belt grinding aero-engine Blisk(Bladed Disk), the abrasive belt can easily interfere with the Blisk, which will damage the valuable Blisk. Therefore, it is indispensable and significant to study the collision detection of belt grinding the Blisk. However, the application of traditional collision detection algorithms in this complicated realistic scene is difficult to obtain satisfactory results. In order to improve the accuracy and efficiency of the collision detection of grinding the Blisk, a collision detection algorithm based on the improved octree segmentation method is proposed in this paper. Firstly, the Oriented Bounding Box (OBB) is applied to establish the collision detection model for the abrasive belt. Secondly, the traditional octree segmentation method is optimized based on the k-means clustering algorithm, and an improved octree segmentation method is presented, in addition, the flow chart of the collision detection algorithm for belt grinding of the Bliskis given. Finally, algorithm verification and experimental verification are carried out based on a certain type of the Blisk. The results suggest that compared with the traditional method, the method in this paper not only promotes the accuracy of collision detection, but also promotes the efficiency of collision detection, and meets the requirements of object collision detection in this tanglesome scene with both accuracy and speed.


2021 ◽  
Author(s):  
Guijian Xiao ◽  
Kangkang Song ◽  
Shulin Chen ◽  
Rentao Wen ◽  
Xiao Zou

2019 ◽  
Vol 37 ◽  
pp. 496-508 ◽  
Author(s):  
Sijie Yan ◽  
Xiaohu Xu ◽  
Zeyuan Yang ◽  
Dahu Zhu ◽  
Han Ding

2016 ◽  
Vol 1136 ◽  
pp. 42-47 ◽  
Author(s):  
Ya Xiong Chen ◽  
Yun Huang ◽  
Gui Jian Xiao ◽  
Gui Lin Chen ◽  
Zhi Wu Liu ◽  
...  

In abrasive belt grinding, abrasive belt granularity, abrasive belt speed,feeding speed and grinding force have a great influence on the surface roughness. In order to predicate the surface roughness of Ti-6Al-4V,a response surface methodology are used to build the model to predict surface roughness,and the influence of various parameters on surface roughness was analysed. The research shows that with the abrasive belt granularity and abrasive belt speed increasing,the work piece surface roughness decreases;with the grinding force and feeding speed increasing,the work piece surface roughness increases. Through the test,the response surface methodology with high prediction accuracy,provides a theoretical basis for the reasonable selection of abrasive belt grinding parameters.


Sign in / Sign up

Export Citation Format

Share Document