Numerical and physical simulation of the forging process with liquid core

Author(s):  
Yong-qiang Wu ◽  
Wen Fu ◽  
Kai-kun Wang
2013 ◽  
Vol 762 ◽  
pp. 261-265 ◽  
Author(s):  
Tanya I. Cherkashina ◽  
Igor Mazur ◽  
Sergey A. Aksenov

Numerical and physical simulation on model samples can provide data for various aspects of metal forming, without resorting to time-consuming and costly full-scale tests. This paper presents examples of modeling of the deformation of a slab with a liquid core. The use of soft reduction can enhance the homogeneity of the structure, which improves the quality of cast billets. Mathematical modeling is described here where the fluid layer is taken into account by the influence of boundary conditions in the crust in the form of ferrostatic pressure, which allows calculation of the intensity of deformation, total deformation and strain. It also provides a novel method for studying the process of soft reduction. It is based on a physical model of the slab consisting of a closed solid shell made of a calibrated lead shot and the Wood's alloy. To simulate the liquid molten metal, the interior of the shell is filled with gelatin. This approach can be applied to further studies on deformation processes and the penetration of deformation into complex metallic systems.


2012 ◽  
Vol 268-270 ◽  
pp. 454-457
Author(s):  
Yong Jun Zhang ◽  
Zhu Bai Liu ◽  
Jing Tao Han

The forging method with horizontal V – shaped anvil is introduced to control fibrous tissue flow direction through changing shape of anvil, its working face is composed of four projecting cone, it can realize no transverse tensile stress forging. For this, in the paper qualitative physical simulation was carried out. The results show that there was no crack between the hole and the pin in deformation zone of rectangular billet by horizontal V – shaped anvil forging method, therefore, the authors think that there no transverse tensile stress in deformation zone of billet in the forging process of horizontal V – shaped anvil.


Author(s):  
Preecha Yupapin ◽  
Amiri I. S. ◽  
Ali J. ◽  
Ponsuwancharoen N. ◽  
Youplao P.

The sequence of the human brain can be configured by the originated strongly coupling fields to a pair of the ionic substances(bio-cells) within the microtubules. From which the dipole oscillation begins and transports by the strong trapped force, which is known as a tweezer. The tweezers are the trapped polaritons, which are the electrical charges with information. They will be collected on the brain surface and transport via the liquid core guide wave, which is the mixture of blood content and water. The oscillation frequency is called the Rabi frequency, is formed by the two-level atom system. Our aim will manipulate the Rabi oscillation by an on-chip device, where the quantum outputs may help to form the realistic human brain function for humanoid robotic applications.


Optik ◽  
2012 ◽  
Vol 123 (18) ◽  
pp. 1613-1616 ◽  
Author(s):  
Wenhui Fang ◽  
Chenglin Sun ◽  
Guannan Qu ◽  
Yunfeng Ding ◽  
Anyang Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document