Experimental investigation and numerical simulations of temperature and morphology in material extrusion additive manufacturing

Author(s):  
Mengyuan Zhou ◽  
Liang Si ◽  
Peng Chen ◽  
Maoyuan Li ◽  
Yun Zhang ◽  
...  
2021 ◽  
Author(s):  
Zahra Taheri ◽  
Ali Karimnejad Esfahani ◽  
Abas Ramiar

Abstract One of the major drawbacks of material extrusion additive manufacturing (AM) is hot-end clogging. This study aims to answer the question, “What thermal conditions lead to clogging during filament-based material extrusion?” Answering this question requires a clear understanding of temperature distribution inside the liquefier. However, this could not be achieved only through experimental measurements. Therefore, numerical simulations were also carried out by developing a 3D finite volume model of the hot-end. The results obtained from numerical simulations show good agreement with experimental measurements. They also give us a detailed picture of the temperature gradient near the nozzle. Moreover, a series of experiments were performed to determine when clogging occurs, and some criteria for avoiding clogging were presented. These results were also compared and combined with the numerical results to investigate the thermal condition leading to clogging. As the results show, overheating the heat barrier increases the length of the filament, whose temperature is above the glass transition temperature. As this length exceeds a critical value, the filament buckles under the extruder motor force and clogging occurs.


2019 ◽  
Vol 28 ◽  
pp. 419-429 ◽  
Author(s):  
Marcin P. Serdeczny ◽  
Raphaël Comminal ◽  
David B. Pedersen ◽  
Jon Spangenberg

2011 ◽  
Vol 18 (3) ◽  
pp. 397-406 ◽  
Author(s):  
Michele Conti ◽  
Denis Van Loo ◽  
Ferdinando Auricchio ◽  
Matthieu De Beule ◽  
Gianluca De Santis ◽  
...  

Author(s):  
Hagen Kohl ◽  
Lisa Schade ◽  
Gabor Matthäus ◽  
Tobias Ullsperger ◽  
Burak Yürekli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document