Additive manufacturing of pure copper: From numerical simulations to experimental results

Author(s):  
Hagen Kohl ◽  
Lisa Schade ◽  
Gabor Matthäus ◽  
Tobias Ullsperger ◽  
Burak Yürekli ◽  
...  
Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 740
Author(s):  
Qi Jiang ◽  
Peilei Zhang ◽  
Zhishui Yu ◽  
Haichuan Shi ◽  
Di Wu ◽  
...  

With the development of the aerospace and automotive industries, high heat exchange efficiency is a challenge facing the development of various industries. Pure copper has excellent mechanical and physical properties, especially high thermal conductivity and electrical conductivity. These excellent properties make pure copper the material of choice for the manufacture of heat exchangers and other electrical components. However, the traditional processing method is difficult to achieve the production of pure copper complex parts, so the production of pure copper parts through additive manufacturing has become a problem that must be overcome in industrial development. In this article, we not only reviewed the current status of research on the structural design and preparation of complex pure copper parts by researchers using selective laser melting (SLM), selective electron beam melting (SEBM) and binder jetting (BJ) in recent years, but also reviewed the forming, physical properties and mechanical aspects of pure copper parts prepared by different additive manufacturing methods. Finally, the development trend of additive manufacturing of pure copper parts is also prospected.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Jianhua Liu ◽  
Hao Gong ◽  
Xiaoyu Ding

Recently, the wedge self-locking nut, a special anti-loosening product, is receiving more attention because of its excellent reliability in preventing loosening failure under vibration conditions. The key characteristic of a wedge self-locking nut is the special wedge ramp at the root of the thread. In this work, the effect of ramp angle on the anti-loosening ability of wedge self-locking nuts was studied systematically based on numerical simulations and experiments. Wedge self-locking nuts with nine ramp angles (10 deg, 15 deg, 20 deg, 25 deg, 30 deg, 35 deg, 40 deg, 45 deg, and 50 deg) were modeled using a finite element (FE) method, and manufactured using commercial production technology. Their anti-loosening abilities under transversal vibration conditions were analyzed based on numerical and experimental results. It was found that there is a threshold value of the initial preload below which the wedge self-locking nuts would lose their anti-loosening ability. This threshold value of initial preload was then proposed for use as a criterion to evaluate the anti-loosening ability of wedge self-locking nuts quantitatively and to determine the optimal ramp angle. Based on this criterion, it was demonstrated, numerically and experimentally, that a 30 deg wedge ramp resulted in the best anti-loosening ability among nine ramp angles studied. The significance of this study is that it provides an effective method to evaluate the anti-loosening ability of wedge self-locking nuts quantitatively, and determined the optimal ramp angle in terms of anti-loosening ability. The proposed method can also be used to optimize other parameters, such as the material properties and other dimensions, to guarantee the best anti-loosening ability of wedge self-locking nuts.


2016 ◽  
Vol 10 (11) ◽  
pp. 203
Author(s):  
Mohd Zaid Othman ◽  
Qasim H. Shah ◽  
Muhammad Akram Muhammad Khan ◽  
Tan Kean Sheng ◽  
M. A. Yahaya ◽  
...  

A series of numerical simulations utilizing LS-DYNA was performed to determine the mid-point deformations of V-shaped plates due to blast loading. The numerical simulation results were then compared with experimental results from published literature. The V-shaped plate is made of DOMEX 700 and is used underneath an armour personal carrier vehicle as an anti-tank mine to mitigate the effects of explosion from landmines in a battlefield. The performed numerical simulations of blast loading of V-shaped plates consisted of various angles i.e. 60°, 90°, 120°, 150° and 180°; variable mass of explosives located at the central mid-point of the V-shaped vertex with various stand-off distances. It could be seen that the numerical simulations produced good agreement with the experimental results where the average difference was about 26.6%.


1969 ◽  
Vol 47 (14) ◽  
pp. 1485-1491 ◽  
Author(s):  
Neil Waterhouse

The specific heat of copper heated in hydrogen at 1040 °C has been measured over the temperature range 0.4 to 3.0 °K and found to be anomalous. The anomaly occurs in the same temperature range as the solid hydrogen λ anomaly which, in conjunction with evidence of ortho to para conversion of hydrogen in the sample, suggests the presence of molecular hydrogen in the copper. The anomaly reported by Martin for "as-received" American Smelting and Refining Company (ASARCO) 99.999+ % pure copper has been briefly compared with the present results. The form of the anomaly produced by the copper-hydrogen specimen has been compared with Schottky curves using the simplest possible model, that for two level splitting of the degenerate J = 1 rotational state of the ortho-hydrogen molecule.Maintenance of the copper-hydrogen sample at ~20 °K for approximately 1 week removed the "hump" in the specific heat curve. An equation of the form Cp = γT + (464.34/(θ0c)3)T3 was found to fit these experimental results and produced a value for γ which had increased over that for vacuumannealed pure copper by ~2%.


Author(s):  
Wanfei Ren ◽  
Jinkai Xu ◽  
Zhongxu Lian ◽  
Xiaoqing Sun ◽  
Zheming Xu ◽  
...  

Abstract The fabrication of pure copper microstructures with submicron resolution has found a host of applications such as 5G communications and highly sensitive detection. The tiny and complex features of these structures can enhance device performance during high-frequency operation. However, the easy manufacturing of microstructures is still a challenge. In this paper, we present localized electrochemical deposition micro additive manufacturing (LECD-μAM), combining localized electrochemical deposition (LECD) and closed-loop control of atomic force servo technology, which can print helical springs and hollow tubes very effectively. We further demonstrate an overall model based on pulsed microfluidics from a hollow cantilever LECD process and the closed-loop control of an atomic force servo. The printing state of the micro-helical springs could be assessed by simultaneously detecting the Z-axis displacement and the deflection of the atomic force probe (AFP) cantilever. The results showed that it took 361 s to print a helical spring with a wire length of 320.11 μm at a deposition rate of 0.887 μm/s, which could be changed on the fly by simply tuning the extrusion pressure and the applied voltage. Moreover, the in situ nanoindenter was used to measure the compressive mechanical properties of the helical spring. The shear modulus of the helical spring material was about 60.8 GPa, much higher than that of bulk copper (~44.2 GPa). Additionally, the microscopic morphology and chemical composition of the spring were characterized. These results delineated a new way of fabricating terahertz transmitter components and micro-helical antennas with LECD-μAM technology.


2004 ◽  
Vol 127 (3) ◽  
pp. 515-519 ◽  
Author(s):  
Yongjun Lai ◽  
Marek Kujath ◽  
Ted Hubbard

A micro-machined manipulator with three kinematic degrees-of-freedom (DOF): x, y, and φ is presented. The manipulator is driven by three thermal actuators. A six DOF discrete spring-mass model of the compliant mechanism is developed which manifests the dynamic properties of the device. Numerical simulations are compared with experimental results.


Author(s):  
Kengo Aizawa ◽  
Masahiro Ueda ◽  
Teppei Shimada ◽  
Hideki Aoyama ◽  
Kazuo Yamazaki

Abstract Laser metal deposition (LMD) is an additive manufacturing technique, whose performance can be influenced by a considerable number of factors and parameters. Typically, a powder is carried by an inert gas and sprayed by a nozzle, with a coaxial laser beam passing through the nozzle and overlapping the powder flow, thereby generating a molten material pool on a substrate. Monitoring the evolution of this process allows for a better comprehension and control of the process, thereby enhancing the deposition quality. As the metal additive manufacturing mechanism has not yet been elucidated, it is not clear how process parameters affect material properties, molding accuracy, and molding efficiency. When cladding is performed under uncertain conditions, a molded part with poor material properties and dimensional accuracy is created. In this paper, we propose a method for high efficiency molding by controlling the distance between the head nozzle and the molten pool in real time. The distance is identified by an originally developed sensor based on a triangulation method. According to the distance, the head nozzle is automatically controlled into the optimum position. As a result, an ideal molding process can be generated, so that high efficiency molding and high-quality material properties can be obtained. Experimental results show that continuing deposition at the optimum distance assists in achieving deposition efficiency and dimensional accuracy. According to the specific experimental results of this method, the modeling efficiency was increased by 27% compared to the method without correction, and the modeling was successful with an error within 1 mm.


Sign in / Sign up

Export Citation Format

Share Document