Designing a High Temperature Epoxy Composite Ink for Material Extrusion Additive Manufacturing

2021 ◽  
Author(s):  
Madeline Wimmer ◽  
Brett Compton
Author(s):  
Noah G. Skrzypczak ◽  
Nagendra G. Tanikella ◽  
Joshua M. Pearce

Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met for under $1,000, the Cerberus – an open source three-headed self-replicating rapid prototyper (RepRap) was designed and tested with the following capabilities: i) 200oC-capable heated bed, ii) 500oC-capabel hot end, iii) isolated heated chamber with 1kW space heater core and iv) mains voltage chamber and bed heating for rapid start. The Cereberus successfully prints polyetherketoneketone (PEKK) and polyetherimide (PEI, ULTEM) with tensile strengths of 77.5 and 80.5 MPa, respectively. As a case study, open source face masks were 3-D printed in PEKK and shown not to warp upon widely home-accessible oven-based sterilization.


2021 ◽  
pp. 101960
Author(s):  
Aylanna P.M. de Araujo ◽  
Simon Pauly ◽  
Rodolfo L. Batalha ◽  
Francisco G. Coury ◽  
Claudio S. Kiminami ◽  
...  

Open Ceramics ◽  
2021 ◽  
pp. 100165
Author(s):  
Sergey N. Golubev ◽  
Olga Yu. Kurapova ◽  
Ivan Yu. Archakov ◽  
Vladimir G. Konakov

Author(s):  
Richard A. Michi ◽  
Alex Plotkowski ◽  
Amit Shyam ◽  
Ryan R. Dehoff ◽  
Sudarsanam Suresh Babu

2004 ◽  
Vol 23 (17) ◽  
pp. 1883-1892 ◽  
Author(s):  
Santhosh Mahale ◽  
Deepika Rajamani ◽  
A. Revathi ◽  
M. Rajendra Prakash ◽  
Shylaja Srihari ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4317
Author(s):  
Thywill Cephas Dzogbewu ◽  
Willie Bouwer du Preez

TiAl-based intermetallic alloys have come to the fore as the preferred alloys for high-temperature applications. Conventional methods (casting, forging, sheet forming, extrusion, etc.) have been applied to produce TiAl intermetallic alloys. However, the inherent limitations of conventional methods do not permit the production of the TiAl alloys with intricate geometries. Additive manufacturing technologies such as electron beam melting (EBM) and laser powder bed fusion (LPBF), were used to produce TiAl alloys with complex geometries. EBM technology can produce crack-free TiAl components but lacks geometrical accuracy. LPBF technology has great geometrical precision that could be used to produce TiAl alloys with tailored complex geometries, but cannot produce crack-free TiAl components. To satisfy the current industrial requirement of producing crack-free TiAl alloys with tailored geometries, the paper proposes a new heating model for the LPBF manufacturing process. The model could maintain even temperature between the solidified and subsequent layers, reducing temperature gradients (residual stress), which could eliminate crack formation. The new conceptualized model also opens a window for in situ heat treatment of the built samples to obtain the desired TiAl (γ-phase) and Ti3Al (α2-phase) intermetallic phases for high-temperature operations. In situ heat treatment would also improve the homogeneity of the microstructure of LPBF manufactured samples.


Sign in / Sign up

Export Citation Format

Share Document