Two-dimensional numerical study of planar shock-wave/moving-body interactions

Shock Waves ◽  
2003 ◽  
Vol 13 (5) ◽  
pp. 395-408 ◽  
Author(s):  
C. Law ◽  
B. W. Skews
Shock Waves ◽  
2003 ◽  
Vol 13 (5) ◽  
pp. 381-394 ◽  
Author(s):  
C. Law ◽  
L. T. Felthun ◽  
B. W. Skews

1996 ◽  
Vol 313 ◽  
pp. 105-130 ◽  
Author(s):  
O. Igra ◽  
J. Falcovitz ◽  
H. Reichenbach ◽  
W. Heilig

The interaction of a planar shock wave with a square cavity is studied experimentally and numerically. It is shown that such a complex, time-dependent, process can be modelled in a relatively simple manner. The proposed physical model is the Euler equations which are solved numerically, using the second-order-accurate high-resolution GRP scheme, resulting in very good agreement with experimentally obtained findings. Specifically, the wave pattern is numerically simulated throughout the entire interaction process. Excellent agreement is found between the experimentally obtained shadowgraphs and numerical simulations of the various flow discontinuities inside and around the cavity at all times. As could be expected, it is confirmed that the highest pressure acts on the cavity wall which experiences a head-on collision with the incident shock wave while the lowest pressures are encountered on the wall along which the incident shock wave diffracts. The proposed physical model and the numerical simulation used in the present work can be employed in solving shock wave interactions with other complex boundaries.


2019 ◽  
Vol 871 ◽  
pp. 865-895 ◽  
Author(s):  
G. Farag ◽  
P. Boivin ◽  
P. Sagaut

The canonical interaction between a two-dimensional weak Gaussian disturbance (entropy spot, density spot, weak vortex) with an exothermic/endothermic planar shock wave is studied via the linear interaction approximation. To this end, a unified framework based on an extended Kovásznay decomposition that simultaneously accounts for non-acoustic density disturbances along with a poloidal–toroidal splitting of the vorticity mode and for heat release is proposed. An extended version of Chu’s definition for the energy of disturbances in compressible flows encompassing multi-component mixtures of gases is also proposed. This new definition precludes spurious non-normal phenomena when computing the total energy of extended Kovásznay modes. Detailed results are provided for three cases, along with fully general expressions for mixed solutions that combine incoming vortical, entropy and density disturbances.


2016 ◽  
Vol 57 (8) ◽  
Author(s):  
V. Rodriguez ◽  
G. Jourdan ◽  
A. Marty ◽  
A. Allou ◽  
J.-D. Parisse

Sign in / Sign up

Export Citation Format

Share Document