scholarly journals Interaction of two-dimensional spots with a heat releasing/absorbing shock wave: linear interaction approximation results

2019 ◽  
Vol 871 ◽  
pp. 865-895 ◽  
Author(s):  
G. Farag ◽  
P. Boivin ◽  
P. Sagaut

The canonical interaction between a two-dimensional weak Gaussian disturbance (entropy spot, density spot, weak vortex) with an exothermic/endothermic planar shock wave is studied via the linear interaction approximation. To this end, a unified framework based on an extended Kovásznay decomposition that simultaneously accounts for non-acoustic density disturbances along with a poloidal–toroidal splitting of the vorticity mode and for heat release is proposed. An extended version of Chu’s definition for the energy of disturbances in compressible flows encompassing multi-component mixtures of gases is also proposed. This new definition precludes spurious non-normal phenomena when computing the total energy of extended Kovásznay modes. Detailed results are provided for three cases, along with fully general expressions for mixed solutions that combine incoming vortical, entropy and density disturbances.

Author(s):  
Zhifeng Zuo ◽  
Hiroshi Maekawa

WCNS is an efficient high-resolution nonlinear scheme for solving flow-fields including discontinuity. In the present paper, a two-dimensional, unsteady, compressible flow field produced by the interaction between a strong planar shock wave and a strong vortex are simulated numerically using WCNS. The simulation shows the effects of the vortex on a planar shock and the production of acoustic waves by the shock-vortex interaction. At the early times of interaction, the shock wave is perturbed by the vortex and a precursor is produced; with the shock wave emerges from the vortex flow field, a Mach structure was generated and the secondary acoustic wave was formed by the interaction of the reflected shock (MR2) with the precursor. Both components of acoustic wave (the precursor and the second sound wave) propagate radially and have a quadrupolar nature. By this simulation, the ability of WCNS for computational aeroacoustic problems is confirmed.


Shock Waves ◽  
2003 ◽  
Vol 13 (5) ◽  
pp. 381-394 ◽  
Author(s):  
C. Law ◽  
L. T. Felthun ◽  
B. W. Skews

2016 ◽  
Vol 57 (8) ◽  
Author(s):  
V. Rodriguez ◽  
G. Jourdan ◽  
A. Marty ◽  
A. Allou ◽  
J.-D. Parisse

1991 ◽  
Vol 31 (3) ◽  
pp. 354-361
Author(s):  
B. I. Zaslavskii ◽  
S. Yu. Morozkin ◽  
A. A. Prokof'ev ◽  
V. R. Shlegel'

Sign in / Sign up

Export Citation Format

Share Document