Projectively flat Randers metrics with constant flag curvature

2003 ◽  
Vol 325 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Zhongmin Shen

2009 ◽  
Vol 87 (3) ◽  
pp. 359-370 ◽  
Author(s):  
XINYUE CHENG ◽  
ZHONGMIN SHEN

AbstractWe study an important class of Finsler metrics, namely, Randers metrics. We classify Randers metrics of scalar flag curvature whose S-curvatures are isotropic. This class of Randers metrics contains all projectively flat Randers metrics with isotropic S-curvature and Randers metrics of constant flag curvature.



2012 ◽  
Vol 55 (3) ◽  
pp. 474-486 ◽  
Author(s):  
Bin Chen ◽  
Lili Zhao

AbstractSome families of Randers metrics of scalar flag curvature are studied in this paper. Explicit examples that are neither locally projectively flat nor of isotropic S-curvature are given. Certain Randers metrics with Einstein α are considered and proved to be complex. Three dimensional Randers manifolds, with α having constant scalar curvature, are studied.





2008 ◽  
Vol 60 (2) ◽  
pp. 443-456 ◽  
Author(s):  
Z. Shen ◽  
G. Civi Yildirim

AbstractIn this paper, we find equations that characterize locally projectively flat Finsler metrics in the form , where is a Riemannian metric and is a 1-form. Then we completely determine the local structure of those with constant flag curvature.



2007 ◽  
Vol 18 (07) ◽  
pp. 749-760 ◽  
Author(s):  
BENLING LI ◽  
ZHONGMIN SHEN

In this paper, we study a class of Finsler metrics defined by a Riemannian metric and a 1-form. We classify those projectively flat with constant flag curvature.



2015 ◽  
Vol 27 (2) ◽  
Author(s):  
Zoltán Muzsnay ◽  
Péter T. Nagy

AbstractRecently, we developed a method for the study of holonomy properties of non-Riemannian Finsler manifolds and obtained that the holonomy group cannot be a compact Lie group if the Finsler manifold of dimension >2 has non-zero constant flag curvature. The purpose of this paper is to move further, exploring the holonomy properties of projectively flat Finsler manifolds of non-zero constant flag curvature. We prove in particular that projectively flat Randers and Bryant–Shen manifolds of non-zero constant flag curvature have infinite dimensional holonomy group.



2020 ◽  
Vol 36 (6) ◽  
pp. 638-650
Author(s):  
Guang Zu Chen ◽  
Xin Yue Cheng


2020 ◽  
Vol 17 (08) ◽  
pp. 2050126
Author(s):  
Tayebeh Tabatabaeifar ◽  
Behzad Najafi ◽  
Mehdi Rafie-Rad

We introduce almost contact and cosymplectic Finsler manifolds. Then, we characterize almost contact Randers metrics. It is proved that a cosymplectic Finsler manifold of constant flag curvature must have vanishing flag curvature. We prove that every cosymplectic Finsler manifold is a Landsberg space, under a mild condition. Finally, we show that a cosymplectic Finsler manifold is a Douglas space if and only if it is a Berwald space.



Sign in / Sign up

Export Citation Format

Share Document