scholarly journals A Besov algebra calculus for generators of operator semigroups and related norm-estimates

Author(s):  
Charles Batty ◽  
Alexander Gomilko ◽  
Yuri Tomilov

Abstract We construct a new bounded functional calculus for the generators of bounded semigroups on Hilbert spaces and generators of bounded holomorphic semigroups on Banach spaces. The calculus is a natural (and strict) extension of the classical Hille–Phillips functional calculus, and it is compatible with the other well-known functional calculi. It satisfies the standard properties of functional calculi, provides a unified and direct approach to a number of norm-estimates in the literature, and allows improvements of some of them.

1988 ◽  
Vol 30 (3) ◽  
pp. 339-345 ◽  
Author(s):  
Muneo Chō

The joint spectrum for a commuting n-tuple in functional analysis has its origin in functional calculus which appeared in J. L. Taylor's epoch-making paper [19] in 1970. Since then, many papers have been published on commuting n-tuples of operators on Hilbert spaces (for example, [3], [4], [5], [8], [9], [10], [21], [22]).


Author(s):  
Charles Batty ◽  
Alexander Gomilko ◽  
Yuri Tomilov

Abstract We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.


Author(s):  
Shawgy Hussein ◽  
Simon Joseph ◽  
Ahmed Sufyan ◽  
Murtada Amin ◽  
Ranya Tahire ◽  
...  

In this paper, apply an established transference principle to obtain the boundedness of certain functional calculi for the sequence of semigroup generators. It is proved that if be the sequence generates 0- semigroups on a Hilbert space, then for each the sequence of operators has bounded calculus for the closed ideal of bounded holomorphic functions on right half–plane. The bounded of this calculus grows at most logarithmically as. As a consequence decay at ∞. Then showed that each sequence of semigroup generator has a so-called (strong) m-bounded calculus for all m∈ℕ, and that this property characterizes the sequence of semigroup generators. Similar results are obtained if the underlying Banach space is a UMD space. Upon restriction to so-called semigroups, the Hilbert space results actually hold in general Banach spaces.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 116
Author(s):  
Qi Liu ◽  
Yongjin Li

In this paper, we will introduce a new geometric constant LYJ(λ,μ,X) based on an equivalent characterization of inner product space, which was proposed by Moslehian and Rassias. We first discuss some equivalent forms of the proposed constant. Next, a characterization of uniformly non-square is given. Moreover, some sufficient conditions which imply weak normal structure are presented. Finally, we obtain some relationship between the other well-known geometric constants and LYJ(λ,μ,X). Also, this new coefficient is computed for X being concrete space.


Author(s):  
J. A. Conejero ◽  
F. Martínez-Giménez ◽  
A. Peris ◽  
F. Rodenas

AbstractWe provide a complete characterization of the possible sets of periods for Devaney chaotic linear operators on Hilbert spaces. As a consequence, we also derive this characterization for linearizable maps on Banach spaces.


1972 ◽  
Vol 13 (2) ◽  
pp. 167-170 ◽  
Author(s):  
W. G. Dotson

A self-mapping T of a subset C of a normed linear space is said to be non-expansive provided ║Tx — Ty║ ≦ ║x – y║ holds for all x, y ∈ C. There has been a number of recent results on common fixed points of commutative families of nonexpansive mappings in Banach spaces, for example see DeMarr [6], Browder [3], and Belluce and Kirk [1], [2]. There have also been several recent results concerning common fixed points of two commuting mappings, one of which satisfies some condition like nonexpansiveness while the other is only continuous, for example see DeMarr [5], Jungck [8], Singh [11], [12], and Cano [4]. These results, with the exception of Cano's, have been confined to mappings from the reals to the reals. Some recent results on common fixed points of commuting analytic mappings in the complex plane have also been obtained, for example see Singh [13] and Shields [10].


2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


Sign in / Sign up

Export Citation Format

Share Document