associated function
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 17)

H-INDEX

17
(FIVE YEARS 3)

J ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 824-837
Author(s):  
Frederick Odun-Ayo ◽  
Lalini Reddy

Modified pectin (MP) is a bioactive complex polysaccharide that is broken down into smaller fragments of units and used as an oral dietary supplement for cell proliferation. MP is safe and non-toxic with promising therapeutic properties with regard to targeting galectin-3 (GAL-3) toward the prevention and inhibition of viral infections through the modulation of the immune response and anti-inflammatory cytokine effects. This effect of MP as a GAL-3 antagonism, which has shown benefits in preclinical and clinical models, may be of relevance to the progression of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in coronavirus disease 2019 patients. The outbreak of emerging infectious diseases continues to pose a threat to human health. Further to the circulation of multiple variants of SARS-CoV-2, an effective and alternative therapeutic approach to combat it has become pertinent. The use of MP as a GAL-3 inhibitor could serve as an antiviral agent blocking against the SARS-CoV-2-binding spike protein. This review highlights the potential effects of MP in viral infections, its proposed role as a GAL-3 inhibitor, and the associated function concerning a SARS-CoV-2 infection.


Author(s):  
Charles Batty ◽  
Alexander Gomilko ◽  
Yuri Tomilov

Abstract We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2209
Author(s):  
Ibrahim Al-Dayel ◽  
Sharief Deshmukh ◽  
Mohd. Danish Siddiqi

We show presence a special torse-forming vector field (a particular form of torse-forming of a vector field) on generalized Robertson–Walker (GRW) spacetime, which is an eigenvector of the de Rham–Laplace operator. This paves the way to showing that the presence of a time-like special torse-forming vector field ξ with potential function ρ on a Lorentzian manifold (M,g), dimM>5, which is an eigenvector of the de Rham Laplace operator, gives a characterization of a GRW-spacetime. We show that if, in addition, the function ξ(ρ) is nowhere zero, then the fibers of the GRW-spacetime are compact. Finally, we show that on a simply connected Lorentzian manifold (M,g) that admits a time-like special torse-forming vector field ξ, there is a function f called the associated function of ξ. It is shown that if a connected Lorentzian manifold (M,g), dimM>4, admits a time-like special torse-forming vector field ξ with associated function f nowhere zero and satisfies the Fischer–Marsden equation, then (M,g) is a quasi-Einstein manifold.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009684
Author(s):  
Jing Gao ◽  
Shilong Ma ◽  
Xinling Wang ◽  
Yang Yang ◽  
Qihua Luo ◽  
...  

Tropilaelaps mercedesae is one of the most problematic honey bee parasites and has become more threatening to the beekeeping industry. Tropilaelaps can easily parasitize immature honey bees (larvae and pupae) and have both lethal and sublethal effects on the individual worker bees. Our study for the first time experimentally assessed the effects of T. mercedesae on olfactory learning, flight ability, homing ability as well as transcriptional changes in parasitized adult honey bees. T. mercedesae infestation had negative impacts on olfactory associated function, flight ability, and homing rate. The volume of the mushroom body significantly increased in infested honey bees, which may be correlated to the lower sucrose responsiveness as well as lower learning ability in the infested bees. The gene expression involved in immune systems and carbohydrate transport and metabolism were significantly different between infested bees and non-infested bees. Moreover, genes function in cell adhesion play an essential role in olfactory sensory in honey bees. Our findings provide a comprehensive understanding of European honey bees in response to T. mercedesae infestation, and could be used to further investigate the complex molecular mechanisms in honey bees under parasitic stress.


2021 ◽  
Vol 288 (1954) ◽  
pp. 20211156
Author(s):  
Miriam Romagosa ◽  
Sergi Pérez-Jorge ◽  
Irma Cascão ◽  
Helena Mouriño ◽  
Patrick Lehodey ◽  
...  

Animals use varied acoustic signals that play critical roles in their lives. Understanding the function of these signals may inform about key life-history processes relevant for conservation. In the case of fin whales ( Balaenoptera physalus ), that produce different call types associated with different behaviours, several hypotheses have emerged regarding call function, but the topic still remains in its infancy. Here, we investigate the potential function of two fin whale vocalizations, the song-forming 20-Hz call and the 40-Hz call, by examining their production in relation to season, year and prey biomass. Our results showed that the production of 20-Hz calls was strongly influenced by season, with a clear peak during the breeding months, and secondarily by year, likely due to changes in whale abundance. These results support the reproductive function of the 20-Hz song used as an acoustic display. Conversely, season and year had no effect on variation in 40-Hz calling rates, but prey biomass did. This is the first study linking 40-Hz call activity to prey biomass, supporting the previously suggested food-associated function of this call. Understanding the functions of animal signals can help identifying functional habitats and predict the negative effects of human activities with important implications for conservation.


2021 ◽  
Vol 14 ◽  
Author(s):  
Mengying Yang ◽  
Yige Guo ◽  
Shuran Wang ◽  
Changyan Chen ◽  
Yung-Heng Chang ◽  
...  

Protein homeostasis serves as an important step in regulating diverse cellular processes underlying the function and development of the nervous system. In particular, the ubiquitination proteasome system (UPS), a universal pathway mediating protein degradation, contributes to the development of numerous synaptic structures, including the Drosophila olfactory-associative learning center mushroom body (MB), thereby affecting associated function. Here, we describe the function of a newly characterized Drosophila F-box protein CG5003, an adaptor for the RING-domain type E3 ligase (SCF complex), in MB development. Lacking CG5003 ubiquitously causes MB γ axon pruning defects and selective CG5003 expression in pan-neurons leads to both γ axon and α/β lobe abnormalities. Interestingly, change in CG5003 expression in MB neurons does not cause any abnormalities in axons, suggesting that CG5003 functions in cells extrinsic to MB to regulate its development. Mass spectrum analysis indicates that silencing CG5003 expression in all neurons affects expression levels of proteins in the cell and structural morphogenesis, transcription regulator activity, and catalytic activity. Our findings reinforce the importance of UPS and identify a new factor in regulating neuronal development as exemplified by the synaptic structure MB.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Delia A. Gheorghe ◽  
Muriel T. N. Panouillères ◽  
Nicholas D. Walsh

Abstract Background Transcranial Direct Current Stimulation (tDCS) over the prefrontal cortex has been shown to modulate subjective, neuronal and neuroendocrine responses, particularly in the context of stress processing. However, it is currently unknown whether tDCS stimulation over other brain regions, such as the cerebellum, can similarly affect the stress response. Despite increasing evidence linking the cerebellum to stress-related processing, no studies have investigated the hormonal and behavioural effects of cerebellar tDCS. Methods This study tested the hypothesis of a cerebellar tDCS effect on mood, behaviour and cortisol. To do this we employed a single-blind, sham-controlled design to measure performance on a cerebellar-dependent saccadic adaptation task, together with changes in cortisol output and mood, during online anodal and cathodal stimulation. Forty-five participants were included in the analysis. Stimulation groups were matched on demographic variables, potential confounding factors known to affect cortisol levels, mood and a number of personality characteristics. Results Results showed that tDCS polarity did not affect cortisol levels or subjective mood, but did affect behaviour. Participants receiving anodal stimulation showed an 8.4% increase in saccadic adaptation, which was significantly larger compared to the cathodal group (1.6%). Conclusion The stimulation effect on saccadic adaptation contributes to the current body of literature examining the mechanisms of cerebellar stimulation on associated function. We conclude that further studies are needed to understand whether and how cerebellar tDCS may module stress reactivity under challenge conditions.


2020 ◽  
Author(s):  
Abigail Thompson ◽  
Nikolaus Steinbeis

The potential to train social capacities could have wide-ranging positive effects for society, and may be particularly relevant to clinical conditions in which social challenges impact on wellbeing and quality of life. Yet, the study of whether and how social skills can be trained has been neglected until recently. This chapter provides an overview of the most recent studies which have sought to train social abilities across different developmental populations. An overview is first provided of socio-cognitive (Theory of Mind) and socio-affective (Empathy, Compassion) processes, after which studies seeking to enhance these skills are reviewed. Studies are divided into those that directly target the particular skill, or seek to enhance it by targeting an associated function. The neural mechanisms associated with training and impact on prosocial behaviours are highlighted, and methodological implications are discussed throughout. Overall, studies suggest training social capacities may be effective, however further research will be needed to clarify the precise methodological features that lead to training success.


2020 ◽  
Vol 21 (14) ◽  
pp. 4890
Author(s):  
Amela Jusic ◽  
Antonio Salgado-Somoza ◽  
Ana B. Paes ◽  
Francesca Maria Stefanizzi ◽  
Núria Martínez-Alarcón ◽  
...  

Cardiovascular disease (CVD) is the biggest cause of sickness and mortality worldwide in both males and females. Clinical statistics demonstrate clear sex differences in risk, prevalence, mortality rates, and response to treatment for different entities of CVD. The reason for this remains poorly understood. Non-coding RNAs (ncRNAs) are emerging as key mediators and biomarkers of CVD. Similarly, current knowledge on differential regulation, expression, and pathology-associated function of ncRNAs between sexes is minimal. Here, we provide a state-of-the-art overview of what is known on sex differences in ncRNA research in CVD as well as discussing the contributing biological factors to this sex dimorphism including genetic and epigenetic factors and sex hormone regulation of transcription. We then focus on the experimental models of CVD and their use in translational ncRNA research in the cardiovascular field. In particular, we want to highlight the importance of considering sex of the cellular and pre-clinical models in clinical studies in ncRNA research and to carefully consider the appropriate experimental models most applicable to human patient populations. Moreover, we aim to identify sex-specific targets for treatment and diagnosis for the biggest socioeconomic health problem globally.


2020 ◽  
Vol 21 (13) ◽  
pp. 4653
Author(s):  
Rabia Ladjouzi ◽  
Anca Lucau-Danila ◽  
Djamel Drider

The production of antimicrobial molecules often involves complex biological pathways. This study aimed at understanding the metabolic and physiological networks of enterocin EntDD14-associated function, in the bacteriocinogenic strain, Enterococcus faecalis 14. A global and comparative transcriptomic study was carried out on E. faecalis 14 and its isogenic mutant Δbac, inactivated in genes coding for EntDD14. The in vitro ability to form biofilm on polystyrene plates was assessed by the crystal violet method, while the cytotoxicity on human colorectal adenocarcinoma Caco-2 cells was determined by the Cell Counting Kit-8. Transcriptomic data revealed that 71 genes were differentially expressed in both strains. As expected, genes coding for EntDD14 were downregulated in the Δbac mutant, whereas the other 69 genes were upregulated. Upregulated genes were associated with phage-related chromosomal islands, biofilm formation capability, resistance to environmental stresses, and metabolic reprogramming. Interestingly, the Δbac mutant showed an improved bacterial growth, a high capacity to form biofilm on inanimate surfaces and a very weak cytotoxicity level. These multiple metabolic rearrangements delineate a new line of defense to counterbalance the loss of EntDD14.


Sign in / Sign up

Export Citation Format

Share Document